Out-of-Core Progressive Lossless Compression and Sadecti
Decompression of Large Triangle Meshies

Zhiyan Du Pavel Jaromersky Yi-Jen Chiang Nasir Memon

Abstract

In this paper we propose a nowalit-of-coretechnique forprogressivelossless compression and
selectivedecompression of 3D triangle meshes larger than main mendogt existing compression
methods, in order to optimize compression ratios, onlyalequentiadecompression. We develop an
integrated approach that resolves the issue of so-cphefik dependenctp supportselectivedecom-
pression, and in addition enables 1/0-efficient compressidile maintaining high compression ratios.
Our decompression scheme initially provides a global cdritethe entire mesh at a coarse resolution,
and allows the user to select differgagions of interesto further decompress/refine different levels
of detalils, to facilitate out-of-core multiresolution daring for interactive visual inspection. We present
experimental results which show that we achieve fast cossgwa/decompression times and low mem-
ory footprints, with compression ratios comparable to entrout-of-coresingle resolutiormethods.

1. Introduction

Although there has been a significant amount of researchaphips compression, most of these techniques
require the entire input mesh plus the additional data &tras to reside in main memory, which is a severe
limitation to their applicability. In particular, for thesgigantic datasets that need compression the most,
such limitation is clearly a major obstacle. Previouslgréhwere a few out-of-core compression algorithms
that work well for 3D polygonal meshes larger than main meni®y 9, 11], but they only providsingle-
resolution(i.e.,non-progressivecompression. Clearly,@rogressivaepresentation of a mesh is much more
desirable to achieve interactive visual inspection, eeesihaller datasets that can fit in main memory [15].
In this paper we propose a nowelt-of-coretechnique foprogressivdossless compression asélective
decompression of large 3D triangle meshes. An importarttifeaf our algorithm is that we resolve the
issue of so-callegrefix dependencyMost existing compression techniques compress the duteda item
using the information of the items compressed before, ierotol optimize compression ratios. Therefore,
each item; depends on the previous itermpsin the compressed data stream, and we must decompress
all items p before we can decompress iteim We call this conditionprefix dependency Due to prefix
dependency, such compression techniques only suppqttentialdecompression as opposedstective
decompression, which is more desirable in mesh applicatibm particular, in the context of progressive
compression for general triangle meshes, the existingoappes ara-coreand they are mostly constrained
by prefix dependency: to obtain some interested portion efntiesh at a particular level of detaill
previous levels of thentire mesh must be decompressed first. This scheme would not wlnk iout-of-
core setting, since at some (refined) level the main memonydvmt be large enough to hold the entire mesh
for further decompression. A potential method to suppdectiee decompression would be to partition the
mesh into self-contained sub-meshes and compressitiimpendentlybut we need a more clever approach
to achieve high compression ratios. Recently, Kim et al] d&/eloped a multiresolution compression
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technique that supportandom accessibldecompression, but it does not support 1/0O-efficient coluput.
Yoon and Lindstrom [19] gave an out-of-core random accéssibmpression algorithm, but it issingle
resolutionapproach mainly fogeometry computingpplications such as isocontouring and mesh re-ordering
rather than for interactive visual inspection. Cai et a).d®posed an out-of-core progressive compression
method forisosurfacesbut it requires the input triangle mesh to be converted ntegular-grid volume
data to be encoded, and the decoding has to be followed bysurface extraction step teconstructthe
triangle mesh; therefore the methoddssy Moreover, selective decodingri®taddressed in [2]. Gobbetti

et al. [7] presented an out-of-core multiresolution corspi@n approach for terrain rendering, but it requires
a special mesh structure where all patches shargdime regular triangulation connectivifgnd thus there

is noissue of prefix dependency). Our new algorithm, which isafttere, multiresolution, lossless, and
supports selective decompression for general 3D triangkshes, tries to complement these techniques and
fill in the gap in the literature.

Our approach is based on the in-core progressive losslegsression algorithm of Gandoin and Dev-
illers [6], which utilizes a space-patrtitioning tree (a krele). We propose an integrated solution to support
I/O-efficient computation and to resolve the issue of preigehdency, while maintaining high compres-
sion ratios. Our decompression scheme initially providegohal context of the entire mesh at a coarse
resolution, and allows the user to select diffenegions of interesto further decompress/refine daofferent
levels of details, to facilitate out-of-core multiresatut rendering for interactive visual inspection. The
experiments demonstrate the efficacy of our new algorithmpdrticular, we can compress the large St.
Matthew dataset 1/O-efficiently with only 107MB of memonyotprint, while achieving a compression ratio
comparable to those of state-of-the-art out-of-cingle resolutior(lossless) methods [9, 11, 19], albeit our
approach is multiresolution and allows selective decosgiom (see Sec. 4).

2. Previous Related Work

There has been a significant amount of work on mesh compressi® a comprehensive review of these
techniques is not a focus of this paper, we refer to the exttedurvey [1] for details.

The in-core compression approach that is most closelyegtlatour work is the progressive method [6];
we review it in Sec. 2.1. We remark that the follow-up teclueidL6] typically improves the bit rates of [6]
by 10-20% in the geometry coding (which dominates the camngccoding cost) but is more complex,
and thus we opt to use the simpler, and yet still bit-rate iefitcmethod [6] as our basis. As for out-of-
core compression, so far the results are mainlysiogle resolutior{8, 9, 11, 19] (except for the isosurface
method [2]). In [8] a special treatment is given on tardersof mesh partitions. However the borders are
duplicatedfor independent compression of each partition, and it iegsary to encode extra data for “glu-
ing” different copies of the same border vertex. This schewes not work for our case of multiresolution
compression, as duplicatimgultiple versionf border triangles(that lie across subtrees in our case) and
their gluing information would be too costly in compressiatios. Instead, we only keeme copyfor each
border triangle angropagateit across different subtrees at its different stages of aesgion, which is a
major technical component of our algorithm.

As mentioned in Sec. 1, the compression techniques thatuggrograndom accessibldecompression
include [12, 19, 7]; the list additionally includes [3], vehi is an in-core single-resolution method. More-
over, there has been an extensive work on out-of-core resdtiution, view-dependent rendering (with the
main focusnot on compression); we refer to [4, 18] and references thewithEse results.

2.1. Our Basis. In-Core Progressive Compression

We now review the in-core progressive compression apprf@gckvhich is the basis of our algorithm. Ini-
tially, each vertex coordinate of the input mesh is quadtinéo ab-bit integer. The quantization bounding
box is a2® x 2% x 2° uniform grid with each vertex lying in the cell center. Nownsier building an octree

1In [6] the authors mention that it is possible to refine seldgiarts of the mesh, however the prefix dependenugtidiscussed.
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on thenon-emptycells as leaves; going up one level is a quantization of owerfdit in each coordinate,
where the (up to 8) child vertices are collapsed to the parelhtenter, with the connectivity simplified ac-
cordingly. This scheme is similar to tlvertex clusteringnethod widely used for connectivity simplification
(e.g., [14]). Although it may cause some artifacts such amseand non-manifolds, from the viewpoint of
graphics compression, this approach has a nice propettyhihgeometry(i.e., quantization precisionand
the connectivityaresimultaneouslgsimplified naturally.

The method [6] actually useslad treeT rather than an octree, replacing each octree level by three

levels of (binary) k-d tree, to make the change in quantiragirecision (as well as connectivity) smoother,
one dimension at a time. This also makes the encodirgeofmetry informatiorsimple: At the root, we
explicitly record the total numbet of vertices; next, we explicitly record the total number of vertices
lying in the left-child cell buinotthe number; in the right child, sincew, can be derived byts = n — ny.
In this way, we (explicitly or implicitly) record the numbef vertices lying in each node. Due to the
regular structure, the explicitly recorded numbers araighdor the geometry information. We construct
the compressed stream of theometry codey traversingl’ top-down in a breadth-first order, and encoding
the explicitly recorded numbers by an arithmetic code.

The connectivity information is added at the leaves of tke 1f, where for each vertex we store the
incident edges and triangles. To encode connectivity, géthiaversel’ from bottom up and simplify the
mesh connectivity as described above. When merging twa efeittices into the parent vertex, we store
at the parent some necessary connectivity informationterreverse operation to reconstruct the mesh.
After simplification is done, we traversE top-down in a breadth-first order and encode the information
for connectivity reconstruction. The connectivity encaglis further enhanced by using some predictive
techniques; see [6] for more details.

3. Our Approach
3.1. Overview

We split the k-d tre€l” of [6] into two layers with the top treeA in the first layer and a set of subtrees
By, By, -+ - in the second layer; each leaf dfis the rootr; of some subtred3; (see Figure 1). The tree
A hasL levels whereL is a user-specified parameter. Typically we makstop at thep-bit precision of
each coordinate for some valpeand the corresponding is L = 3p. We assume that, as well as each
individual B;, can fitin main memory. This is typically true for large scadmlatasets (e.g., [13]) in practice.
To address therefix dependengywe design our compression stream as shown in Figure 1. Tdte fir
part is the code for, followed by the code for the subtreés, Bs, - - - one by one in that canonical order.
For eachB;, we separate itborder portion(which connectdbeyondB;), from its internal portion (which
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only connectithin B;), and encode therseparately with the border portion first (see Figure 1). We also
have anindex fileto indicate the starting position of ead}). Note that each subtree can independently
encoded/decoded for its internal portion, and the prefixeddpncy is only on the border portions connecting
among related subtrees. With this approach, we can achi@veflicient encoding/decoding and support
selective decoding, with high compression ratios.

During decompression, we first decompressompletely, providing a coarse version of the mesh at
the leaf level ofA. It is important to stress that whild is decoded completely (to get the best possible
mesh quality fromA, which is already coarse), the subtreBscan be selected and decodedatany of
their owndesired levels (e.g.3; not decoded,B, decoded 3 levels down3s 7 levels down, etc.), to
support progressive adaptivity (see the breadth cut in Big.When the user selects which subtrégs
to decompress and to what level of details, for pinefix-dependensubtrees tha3; connects to, we only
need to decompress t®rder portions and can skip the internal portions (using the islim the index
file). As mentioned, thénternal portionsof different subtrees armmdependentf each other and can be
independently decoded progressively to tloein desired leveldn this way, we can significantly reduce the
decompression time and the main memory space needed, lttafadiO-efficientselectivedecompression
and visualization.

A main focus of our algorithm is how to compress the mesh oh sabtreeB;. We first progressively
simplify the internal verticesof B; (which only connect withinB;) to a single point-; (the center of the
root cell), and then progressively simplify tiherder verticeswhich connect beyond;) to this pointr;
(see Fig. 2 (a) to (b) to (c)), so that during decompressioravefirst progressively decode the border and
possibly skip the internal part (recall the simplificati@®-)compression scheme in Sec. 2.1). Note that
compression and decompression are ingameorder, which must be theverseorder of simplification.
Therefore, if we want to decompress the internal vertides,order vertices must be firstlly decom-
pressed (see Fig. 2 from (c) to (b)), but then the internaices can be decompressed progressively to the
desired level onlyFig. 2 from (b) to (a) but we can stop in between).

The major technical challenge is how to deal with biveder trianglesthat lie across subtrees. Suppose
subtreesB; and B; share some border triangles (see Fig. 3(c)), wiigris compressebefore 3; and thus
a prefix-dependent subtree Bf. As pointed out in Sec. 2, employing the idea of [8] to dugkcde border
triangles needs to store the duplicate(s) and the extraeniraftion toglue copies of the same vertex, and thus
the scheme has too much coding cost in multiresolution cesswn. So we only keegne copy for each
border triangle.

Now we consider the process of progressively compressgfdpressing the borders. Observe that
B; and B; can each be fully refined and/or fully simplified (to a singten), resulting in four “end cases”
betweenB; and B;, with two “end versions” each (see Fig. 3(a)-(d)). Thesetheebase cases that we
need to support. SincB; is compressed beforB; and the decoder must follow the same order, during
decompression we start from Fig. 3(a) and first progressisletodeB; fully to obtain (b) in the figure.
We then continue to progressively decaBe fully to obtain (c). Finally, if we do not need; in its full
version, we can progressivegpllapsevertices of B; back (in the reverse order of decoding/refinement),
eventually obtaining (d), ato extracoding cost. Of course, from (c) we can collapse vertice8jno
some desired level and also collapse verticeB jrio another desired level, to obtain connectivity between



any intermediate versions @f; and of B;, atno extracoding cost. In this way, we can achieve very good
coding efficiency while covering all possible connectidti Observe that this scheme imposgsrefix
dependencyf B; on B;: decompressing3; depends on fully decodingg; first, which in turn depends

on fully decoding its prefix-dependent subtrees, and so methwe need to resolve all these dependencies
first2 As for compression, it is important to see that since we oelgpgone copy for a border triangle,

the connectivity iarried overas wepropagatethe triangle across the subtrees. How to propagate border
triangles at their various stages (as in Fig. 3) is a majdrrtisal component of our algorithm. We describe
our technique in more details below.

3.2. Out-of-Core Progressive Compression

We present our out-of-core progressive compression afgori We assume that the input mesh is in the
form of a triangle soup; for an indexed mesh we first perfornoatrof-corepointer de-referencinffl 7] via

a few external sortings to obtain a triangle soup. We rentzak the form ofstreaming meski0] is also
easy to use for our technique, and yet triangle soup proddedf-complete information for each triangle,
making our task of propagating border triangles a littlechisier to describe.

After an initial quantization, we proceed the compressiotwio phases. In the first phase, we construct
the first-layer treed, distribute the input triangles to the leavesAf simplify the coarse mesh of and
compress it. In the second phase, we process the leaf cellsnfl compress their subtreBs, B, - - - one
at a timein that canonical orderwith prefix dependencghe main consideration.

3.2.1. First Phase of Compression

In this phase, we scan through the triangles one by one. [ebrteanglet, we locate the leaf cells of the
tree A containing the three vertices of In the process, wmcrementallyconstruct the tredl: if the leafu
containing the current vertex does not exist, we grbwy adding the missing nodes in the path from the
root tou. Recall thatA stops at levelL. For each current triangle we assign it to aingleleaf of A, and
classify it as arinternal or bordertriangle of that leaf. If all vertices lie in the same leafs internal and

is assigned to that leaf; otherwiseis border and is assigned to the leaf with teeallestnode ID. For a
border trianglet, we also add the corresponding connectivity informatiamnecting between two leaves
of A that contain vertices af

When we scan and distribute the triangles to the leaves$, dhe distributed triangles collectively can
exceed the main memory size and need to be written to disk.9@/the strategy of [5] to perform the same
process twice: once we count how many triangles are assigneach leaf without actually putting them
out so that the starting position for each leaf in the file isn, and in the second time we actually write
out the triangles.

Now we proceed to compress the first-layer mesh correspgridicl. Recall from Sec. 2.1 that we
record the number of vertices lying in each node celldior geometry coding. Instead of the top-down
process in Sec. 2.1, we use a bottom-up process: we assidrendrto each leaf ofl (since the leaf has one
(collapsed) vertex in the coarse mesh, the cell center)fanelach internal node we assign its number as
the sum of the two child numbers (treating a null child as hgviumber 0). In the same bottom-up process,
we also simplify the connectivity progressively. Finallyg perform a top-down breadth-first traversal4n
and complete the geometry as well as the connectivity engodi

When the compression is finished, the structure of the measthé&second phase of compression is
described solely by the subtreBs and their neighbors. Itis no longer necessary to keep teedti@nd the
coarse mesh) in main memory and we can free such memory.

2\We use a plain queue to find all subtrees whose borders needdedoded, sort these subtrees by increasing subtree Is, an
then decode their borders in that order.
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3.2.2. Second Phase of Compression

In the second phase of compression, we process the seg@dslabtreesB, Bs, - - - in that canonical
order (see Fig. 1) one at a time. For edgh after loading to main memory the triangles assigne@{o
with theborderandinternal triangles kept separately, we perform the following tagk¥process the border
triangles;(2) process the internal triangle®) simplify the mesh ofB;; (4) encode the mesh dd;; (5) free
resources. We now describe the details of these tasks.

Task 1. Processing the Border Triangles

In this step, we scan through the border triangles one at @ @wdborder verticeso B;, incrementally
construct the portion of the k-d treB; that correspond to its border vertices, and add the comtgcti
information to these vertices. Recall that we define a veltimg in B; to be border if it has an edge
connecting outside oB;, andinternal if all its edges connect to vertices lying i8; (see Fig. 2). In the
process, we also add border vertices torteghboringsubtreesB;’s, j > i (i.e., B; will be processedater
than B;), grow the border-vertex portion of the k-d tre§'s, and add the connectivity information to these
border vertices.

Lett = (vy,v2,v3) be the current border triangle being processed. Recallthas its three vertices
located in different second-layer subtrees, and is asdignky to the subtree with the smallest ID. Suppose
thatv, lies in B;, v in Bj, andws in By, with 7 < j < k, meaning that the compression ordeHisfirst
then B; and thenB,, (see Figure 4); note thatbelongs toB; and thusi is the smallest among j, k. For
each second-layer subtree, we have a lbcatier vertex array created when needed in the first time, to
keep the border vertices, where for each border vertex veeimttude its coordinates in the array. When
processing, we locatev; to a leaf of the k-d treé; (while incrementally grows;), and add; to the border
vertex array ofB;. We also add the connectivity information duettove store the information aof in v;.
Since the connectivity coder of [6] needs the position ofrteighboring vertices to perform prediction, the
connectivity stored i has to be able to get the positionsvefandvs. However, decoding needs to follow
the same encoding order; at the tifBgis decoded3; and B;, arenot decoded/refined yet and each is still
a single root node; (r;), with v, collapsed to the cell center of andvs to the cell center of;,.. Therefore,
in v; we storet = {r;,r} (see Fig. 4), meaning that= (v, 7;,7%).

Moreover, wepropagatetrianglet to both B; and B, so that the information aofis available when later
we compress3; and B;,. Similar to the above process, we locateto a leaf of the k-d tree3; (while
incrementally growB;), addw; (including its coordinates) to the border vertex array®f and store the
connectivity oft to v, now recording = {vy, 71}, wherev, is recorded by
(a) an encoding of the node ID of the leaf of the k-d tfigédocatingv; (for the connectivity as well as the



geometry ofvy), and

(b) an index ofv; in the border vertex array d8; (for the coordinates afy, to be used by the encoder later
when we process;).

(We remark that (b) is redundant of (a) and widitbe encoded into the compression stream. We include (b)
here just to make the task of releasing resources easiefas&es below). Observe that this recordingt of
(with (b) skipped) reflects the scenario whBnis decoded, wher&; has been refined but nét,. We then
perform a similar process fag in By, now recording = {v,v2} (See Figure 4).

Observe that due to this propagation process, if the custdstteeB; has:i > 1, then some of its border
vertices may have already been propagated from previousessh before we start working ds;. Such
propagation is only téater subtrees but never to previous subtrees, so when we finiskegsing the border
triangles assigned tB;, its border vertices are finalized. The k-d tBgconstructed so far corresponds to
the border vertices. Also, the border vertex array may comtaplicated copies of the same vertex, each for
a different triangle sharing the vertex.

Task 2: Processing the Internal Triangles

We scan the internal triangles 8f one at a time. For each current triangleve locate the three vertices of
t to leaves of the k-d tre8; while incrementally growing3;, and add the connectivity information. If any
newvertex is created, then it is an internal vertex and is adddlget localinternal vertex arrayfor B;. Note
that since only newly created vertices are added to the,ahane is no duplication in the array.

Task 3: Simplifying the Mesh

Recall that simplification is done by going level by level ugthe k-d treeB;, and that encoding/decoding
will be done in the reverse order, top down. Since in decosgioa we want to decompress the border
vertices first and then the internal vertices (so that we kigntke internal vertices if not needed), the sim-
plification must be performed reversely, internal vertifiest and then border vertices (recall from Fig. 2).
To simplify the internal vertices, we go up from the leaveBgfthat are internal vertices, until finally we
collapse all internal vertices to a single point at the cefiter of the root. In the process, we mark all the
nodes traversed @sternal so that later we can visit them during internal-vertex emgdwWe then simplify
the border vertices together with this cell center, goindram the border-vertex leaves until all vertices are
collapsed to the root cell center. Again we mark all the nddegersed avorderto be used later during
border-vertex encoding. Note that a tree node can be méadthdnternal and border (when it is a common
ancestor of an internal and a border leaves). Essentiéiyirée nodes markenternal make an “internal”
k-d tree, and similarly for a “border” k-d tree; the k-d tré&k is just the union of the two k-d trees. We
keep two separate vertex-number counts on the tree nodes$oothe “internal” k-d tree and the other for
the “border” k-d tree, for encoding the vertex geometry ab asthe tree structures of the two trees.

Task 4: Encoding the Mesh

Now encoding is easy. We first encode the border vertices; diy a breadth-first traversal on the border
k-d tree, and then we encode the internal verticeB,aby a breadth-first traversal on the internal k-d tree.
Note that in the process we encode both geometry and cowibgcatthere the connectivity can of course
connect between border and internal vertices, among others

Task 5: Releasing Resources

After encoding the mesh dB;, we want to release the main memory resources that are nerloregded.
The pieces of information that are still needed are relabeitid border verticeswhich will be referenced
from other second-layer subtrees later (other informatiemmbe released right away). Referring to Figure 4
for example, we see that of 5; will still be needed when later we proceBs and By, and when we finish
with B;, v, of B; will still be needed later when we proceSs. Now we discuss when to release the border
vertices of a subtree. Supposg, is aneighboringsubtree ofB;, i.e., there is a border triangle connecting
them. We callB,, aprefix neighborof B; if m < i and asuffix neighboif m > i. Clearly, the border
vertices ofB; can be released when its largest-ID suffix neighbor has bemegsed. In general, for each
subtree we store the subtree IDs of its prefix and suffix n@ighbWhen we finish processing the current



‘ Mesh ‘ Dawn ‘ Night ‘ Lucy ‘ David ‘ St.Matthew‘
#V (M) | 3.43[11.05[ 14.03] 28.18] 186.84
#T (M) 6.59| 21.57| 28.06| 56.23 372.77
Ply (MB) 134 | 447| 508 1,127 7,475
time (m) | 1.58] 5.03| 6.7] 15.37 68.6
size (MB) | 113| 370| 482| 965 6400

Table 1:Mesh statistics. The lower part shows the time to quantizé&gtbits) and convert to triangle soup, and the resulting siz

Mesh bit rate (bpv) compression time (min) / memory footprint
p=7| p=8]in-core|| p=7| p=8 | in-core
Dawn 24.00| 25.99| 20.77 2.1 2.53/72MB 2.7711.6GB
Night 19.87| 21.42| 17.84| 6.07 7.23/83MB 9.4/4.8GB
Lucy 19.81| 21.2| 18.12| 8.47 9.37/68MB| 13.13/6.0GB
David 15.74| 16.73| 14.61| 14.05 15.08 /51MB| 833/12.7GB
St.Matthew|| 12.41| 12.94 N/A || 92.35| 125.03/107MB N/A

Table 2:Compression results. Initial quantization is 16 bits pesrdinate. The memory footprint far=7 is similar top=8 and
is not shown. Our approach ran un@dsGB of RAM and the in-core method ran undE2GB of RAM.

subtreeB;, we check to see if any of its prefix neighbors can be releahik is done by checking them
one by one, and see B; is the largest-ID suffix neighbor of any of them.

4. Experimental Results

We have implemented our technique in C/C++ and ran our exgetis on two Dell Precision PCs; they
have exactly the same configuration except for the RAM si@eésGB vs. 12GB): two 3GHz Intel Xeon
CPUs, Nvidia Quadro FX 4500 graphics, 300GB SCSI 10K rpm,diskl a 64bit Linux OS. We show in
Table 1 the datasets useevhich we initially quantized to 16 bits for each vertex adioate and converted
to triangle soup via out-of-core pointer de-referencing][1

In order to evaluate our algorithm, we want to compare wghnitcore counterpart [6]. To this end, we
took our program and set the first-layer tréd¢o havel. = 48 levels, i.e., letting treel in main memory to
be the entire k-d tree; we call this programc and oursooc. Note thati nc still keeps the input triangle
soupon diskand the only in-core working set to process the input is tleespo hold one triangle, so that
the entire main memory is devoted to ttéeFori nc, this way is even a bit more space-efficient than using
streaming mesh [10] since there is no need to keep unfinalides. In the following, botboc andi nc
ran on the same triangle soup as inputs, under RAM sizes 0&8@R2GB respectively.

To see how many levels the treeshould have irooc, we setL to be 18, 21, 24 (corresponding to
guantization precision gf bits per coordinate at the leaf level df with p = 6,7, 8; recall thatL. = 3p)
and ran it on Lucy. We see that smaller valuelo{p) made better compression time and ratio (7m32s,
8m29s, 9Im22s fop = 6, 7,8 with bit-rates 18.98, 19.81, 21.2 bpv), but worse imageiguédee Fig. 5).
We recommend to uge= 8, and possibly = 7 for better compression if we are willing to tolerate a worse
quality in the global first-layer mesh.

Next, we compared the compression performanamoaf (with p = 7, 8) and nc, and show the results
in Table 2. We see that our compression ratios are worse (@verage 11% worse fgr = 7 and 19%

3The datasets are courtesy of the Stanford Graphics Lab. tEdfethew the ply size shown is the total of the original 12
self-complete indexed sub-files without removing the drgikd vertices.



‘ Mesh ‘ Dawn ‘ Night ‘ Lucy ‘ David ‘ St.Matthew‘

Uniform LOD (0.5GB RAM) /Varying LOD (0.5GB RAM) /In-core @GB RAM)

time (m) 0.03/0.01/0.92 0.11/0.08/2.48 0.4/0.35/3.25| 0.73/0.62/5.47| 2.5/2.38/ N/A
# tri (M) 0.30/0.26/6.59 0.47/0.33/20.57 0.71/0.41/27.6 1.68/0.52/54.68 3.36/1.09/ N/A
mem (MB) 79/78/829 105/92/2662| 134/103/3379| 253/112/6144) 468/297/ N/A

Table 3:Decompression results (whare= 8). We show our selective decompression with uniform andixgriODs, compared
with the in-core method.

worse forp = 8) due to the support of selective decompression. Howevemamory footprint was quite
small—only 107MB for St. Matthew, whilenc had a large footprint for tred—about 10 times the mesh
size, which is not too surprising for multiresolution dateustures given that the incident triangles and
incident edges are explicitly stored with each vertex indtracture. For Davidj nc already resulted in
thrashing, since the memory access of traversing Arég quite random. This shows that our two-layer
scheme is very effective: we can greatly reduce the mematpfmt even with the same implementation
for the incidence information.

For selective decompression, in principle we can selectubé&rees manually or automatically by view-
dependent level-of-detail (LOD) techniques [15]. Sincefoaus in this paper is on compression/decompression,
we defer automatic selection to future work. Currently, moplementation supports manual selection of
subtrees via a mouse click, where the LOD can either varyugdbd(varying LOD) or stay the sameui-
form LOD) when moving away from the clicked subtree through nleaying subtrees up to some degrees
of neighboring. We show the results in Table 3, where the meistiled level was set to 16 bits of precision
per coordinate (except for St. Matthew uniform LOD (14 bifgy St. Matthew varying LOD it was still
set to 16 bits). For varying LOD, the clicked subtree, its iedliate neighboring subtrees (the degree-1
neighbors) and the neighbors of degree-1 neighbors (theee&yneighbors) had the same tree depth (at
16 bits of precision); the next-degree (degree-3) neighl@re at tree depth two levels up, the degree-4
neighbors were at tree depth two more levels up, and so oi,18n$ubtrees were selected. We remark
that decompressing the first-layer trdevas always less than 1 second. Also, in the in-core apprdaeh,
encoder needs to keep the entire tree but the decoder org ke current level, and thus the memory
footprint for decoder was only about half of that for encodédwote that with the original in-core approach, it
is necessary to decompress the whole mesh up to the speddiedThe number of decompressed triangles
is also important, since a lower number results in fastersandother interaction with the decompressed
mesh. We show the corresponding images of our selectivarg@ession in Figure 6.

Comparison with other out-of-core methods

Although our compression ratio is (moderately) worse thae, it is comparable to the state-of-the-art
out-of-core, single-resolutioapproaches. Taking ogr= 8 result for St. Matthew (Table 2), we are 21%
worse (12.94 vs. 10.67 bpv) than [9] (which neither presetagout order nor supports selective decom-
pression), 9% worse (12.94 vs. 11.82 bpv) than the ordesepving approach [11] (which does not support
selective decompression), and 77% better (12.94 vs. 223 lwgn the order-preserving, random-accessible
technique [19] (which also supports transparent mesh a@es high cache utilization), while our method
is multiresolution and supports selective decompression.
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