
Out-of-Core Progressive Lossless Compression and Selective
Decompression of Large Triangle Meshes∗

Zhiyan Du Pavel Jaromersky Yi-Jen Chiang Nasir Memon

Abstract

In this paper we propose a novelout-of-coretechnique forprogressivelossless compression and
selectivedecompression of 3D triangle meshes larger than main memory. Most existing compression
methods, in order to optimize compression ratios, only allow sequentialdecompression. We develop an
integrated approach that resolves the issue of so-calledprefix dependencyto supportselectivedecom-
pression, and in addition enables I/O-efficient compression, while maintaining high compression ratios.
Our decompression scheme initially provides a global context of the entire mesh at a coarse resolution,
and allows the user to select differentregions of interestto further decompress/refine todifferent levels
of details, to facilitate out-of-core multiresolution rendering for interactive visual inspection. We present
experimental results which show that we achieve fast compression/decompression times and low mem-
ory footprints, with compression ratios comparable to current out-of-coresingle resolutionmethods.

1. Introduction

Although there has been a significant amount of research on graphics compression, most of these techniques
require the entire input mesh plus the additional data structures to reside in main memory, which is a severe
limitation to their applicability. In particular, for those gigantic datasets that need compression the most,
such limitation is clearly a major obstacle. Previously, there were a few out-of-core compression algorithms
that work well for 3D polygonal meshes larger than main memory [8, 9, 11], but they only providesingle-
resolution(i.e.,non-progressive) compression. Clearly, aprogressiverepresentation of a mesh is much more
desirable to achieve interactive visual inspection, even for smaller datasets that can fit in main memory [15].

In this paper we propose a novelout-of-coretechnique forprogressivelossless compression andselective
decompression of large 3D triangle meshes. An important feature of our algorithm is that we resolve the
issue of so-calledprefix dependency. Most existing compression techniques compress the current data item
using the information of the items compressed before, in order to optimize compression ratios. Therefore,
each itemi depends on the previous itemsp in the compressed data stream, and we must decompress
all items p before we can decompress itemi. We call this conditionprefix dependency. Due to prefix
dependency, such compression techniques only supportsequentialdecompression as opposed toselective
decompression, which is more desirable in mesh applications. In particular, in the context of progressive
compression for general triangle meshes, the existing approaches arein-coreand they are mostly constrained
by prefix dependency: to obtain some interested portion of the mesh at a particular level of detail,all
previous levels of theentiremesh must be decompressed first. This scheme would not work inthe out-of-
core setting, since at some (refined) level the main memory would not be large enough to hold the entire mesh
for further decompression. A potential method to support selective decompression would be to partition the
mesh into self-contained sub-meshes and compress themindependently, but we need a more clever approach
to achieve high compression ratios. Recently, Kim et al. [12] developed a multiresolution compression

∗Research supported by NSF grants CCF-0093373 and CCF-0541255. The authors are with the CSE Department, Polytechnic
Institute of New York University, Brooklyn, NY, USA. Email:{zdu,jpavel}@cis.poly.edu;{yjc,memon}@poly.edu.

technique that supportsrandom accessibledecompression, but it does not support I/O-efficient computation.
Yoon and Lindstrom [19] gave an out-of-core random accessible compression algorithm, but it is asingle
resolutionapproach mainly forgeometry computingapplications such as isocontouring and mesh re-ordering
rather than for interactive visual inspection. Cai et al. [2] proposed an out-of-core progressive compression
method forisosurfaces, but it requires the input triangle mesh to be converted intoa regular-grid volume
data to be encoded, and the decoding has to be followed by an isosurface extraction step toreconstructthe
triangle mesh; therefore the method islossy. Moreover, selective decoding isnot addressed in [2]. Gobbetti
et al. [7] presented an out-of-core multiresolution compression approach for terrain rendering, but it requires
a special mesh structure where all patches share thesame regular triangulation connectivity(and thus there
is no issue of prefix dependency). Our new algorithm, which is out-of-core, multiresolution, lossless, and
supports selective decompression for general 3D triangle meshes, tries to complement these techniques and
fill in the gap in the literature.

Our approach is based on the in-core progressive lossless compression algorithm of Gandoin and Dev-
illers [6], which utilizes a space-partitioning tree (a k-dtree). We propose an integrated solution to support
I/O-efficient computation and to resolve the issue of prefix dependency,1 while maintaining high compres-
sion ratios. Our decompression scheme initially provides aglobal context of the entire mesh at a coarse
resolution, and allows the user to select differentregions of interestto further decompress/refine todifferent
levels of details, to facilitate out-of-core multiresolution rendering for interactive visual inspection. The
experiments demonstrate the efficacy of our new algorithm. In particular, we can compress the large St.
Matthew dataset I/O-efficiently with only 107MB of memory footprint, while achieving a compression ratio
comparable to those of state-of-the-art out-of-coresingle resolution(lossless) methods [9, 11, 19], albeit our
approach is multiresolution and allows selective decompression (see Sec. 4).

2. Previous Related Work

There has been a significant amount of work on mesh compression. As a comprehensive review of these
techniques is not a focus of this paper, we refer to the excellent survey [1] for details.

The in-core compression approach that is most closely related to our work is the progressive method [6];
we review it in Sec. 2.1. We remark that the follow-up technique [16] typically improves the bit rates of [6]
by 10-20% in the geometry coding (which dominates the connectivity coding cost) but is more complex,
and thus we opt to use the simpler, and yet still bit-rate efficient method [6] as our basis. As for out-of-
core compression, so far the results are mainly forsingle resolution[8, 9, 11, 19] (except for the isosurface
method [2]). In [8] a special treatment is given on thebordersof mesh partitions. However the borders are
duplicatedfor independent compression of each partition, and it is necessary to encode extra data for “glu-
ing” different copies of the same border vertex. This schemedoes not work for our case of multiresolution
compression, as duplicatingmultiple versionsof border triangles(that lie across subtrees in our case) and
their gluing information would be too costly in compressionratios. Instead, we only keepone copyfor each
border triangle andpropagateit across different subtrees at its different stages of compression, which is a
major technical component of our algorithm.

As mentioned in Sec. 1, the compression techniques that can supportrandom accessibledecompression
include [12, 19, 7]; the list additionally includes [3], which is an in-core single-resolution method. More-
over, there has been an extensive work on out-of-core multiresolution, view-dependent rendering (with the
main focusnot on compression); we refer to [4, 18] and references therein for these results.

2.1. Our Basis: In-Core Progressive Compression

We now review the in-core progressive compression approach[6], which is the basis of our algorithm. Ini-
tially, each vertex coordinate of the input mesh is quantized into ab-bit integer. The quantization bounding
box is a2b × 2b × 2b uniform grid with each vertex lying in the cell center. Now consider building an octree

1In [6] the authors mention that it is possible to refine selected parts of the mesh, however the prefix dependency isnotdiscussed.

A

B 1 B 2 B3 B 4

B ...2B 1

B Border1 B Internal1 B Border2 B Internal ...2A

Breadth Cut for Selective
Progressive Decoding

First Layer

Compressed Data

Index File

Second Layer

Figure 1:The two-layer k-d tree and the structure of the com-

pressed stream. We also show an example of a breadth cut for

selective progressive decompression.

ri
ri

(a) (b) (c)

Figure 2: Simplification of the mesh in subtreeBi. The

circle vertices areborder verticesand the square ones arein-

ternal vertices. The root cell center isri.

on thenon-emptycells as leaves; going up one level is a quantization of one fewer bit in each coordinate,
where the (up to 8) child vertices are collapsed to the parentcell center, with the connectivity simplified ac-
cordingly. This scheme is similar to thevertex clusteringmethod widely used for connectivity simplification
(e.g., [14]). Although it may cause some artifacts such as seams and non-manifolds, from the viewpoint of
graphics compression, this approach has a nice property that thegeometry(i.e.,quantization precision) and
theconnectivityaresimultaneouslysimplified naturally.

The method [6] actually uses ak-d treeT rather than an octree, replacing each octree level by three
levels of (binary) k-d tree, to make the change in quantization precision (as well as connectivity) smoother,
one dimension at a time. This also makes the encoding ofgeometry informationsimple: At the root, we
explicitly record the total numbern of vertices; next, we explicitly record the total numbern1 of vertices
lying in the left-child cell butnot the numbern2 in the right child, sincen2 can be derived byn2 = n − n1.
In this way, we (explicitly or implicitly) record the numberof vertices lying in each node. Due to the
regular structure, the explicitly recorded numbers are enough for the geometry information. We construct
the compressed stream of thegeometry codeby traversingT top-down in a breadth-first order, and encoding
the explicitly recorded numbers by an arithmetic code.

The connectivity information is added at the leaves of the treeT , where for each vertex we store the
incident edges and triangles. To encode connectivity, we first traverseT from bottom up and simplify the
mesh connectivity as described above. When merging two child vertices into the parent vertex, we store
at the parent some necessary connectivity information for the reverse operation to reconstruct the mesh.
After simplification is done, we traverseT top-down in a breadth-first order and encode the information
for connectivity reconstruction. The connectivity encoding is further enhanced by using some predictive
techniques; see [6] for more details.

3. Our Approach

3.1. Overview

We split the k-d treeT of [6] into two layers, with the top treeA in the first layer and a set of subtrees
B1, B2, · · · in the second layer; each leaf ofA is the rootri of some subtreeBi (see Figure 1). The tree
A hasL levels whereL is a user-specified parameter. Typically we makeA stop at thep-bit precision of
each coordinate for some valuep, and the correspondingL is L = 3p. We assume thatA, as well as each
individualBi, can fit in main memory. This is typically true for large scanned datasets (e.g., [13]) in practice.

To address theprefix dependency, we design our compression stream as shown in Figure 1: The first
part is the code forA, followed by the code for the subtreesB1, B2, · · · one by one in that canonical order.
For eachBi, we separate itsborder portion(which connectsbeyondBi), from its internal portion(which

Bi Bj Bi Bj

(b)

Bi Bj Bi Bj

(d)(c)(a)

Figure 3:Connectivity between borders of two subtreesBi andBj .

only connectswithin Bi), and encode themseparately, with the border portion first (see Figure 1). We also
have anindex fileto indicate the starting position of eachBi. Note that each subtree can beindependently
encoded/decoded for its internal portion, and the prefix dependency is only on the border portions connecting
among related subtrees. With this approach, we can achieve I/O-efficient encoding/decoding and support
selective decoding, with high compression ratios.

During decompression, we first decompressA completely, providing a coarse version of the mesh at
the leaf level ofA. It is important to stress that whileA is decoded completely (to get the best possible
mesh quality fromA, which is already coarse), the subtreesBi can be selected and decoded toany of
their own desired levels (e.g.,B1 not decoded,B2 decoded 3 levels down,B3 7 levels down, etc.), to
support progressive adaptivity (see the breadth cut in Fig.1). When the user selects which subtreesBi

to decompress and to what level of details, for theprefix-dependentsubtrees thatBi connects to, we only
need to decompress theborder portions and can skip the internal portions (using the indices in the index
file). As mentioned, theinternal portionsof different subtrees areindependentof each other and can be
independently decoded progressively to theirown desired levels. In this way, we can significantly reduce the
decompression time and the main memory space needed, to facilitate I/O-efficientselectivedecompression
and visualization.

A main focus of our algorithm is how to compress the mesh of each subtreeBi. We first progressively
simplify the internal verticesof Bi (which only connect withinBi) to a single pointri (the center of the
root cell), and then progressively simplify theborder vertices(which connect beyondBi) to this pointri

(see Fig. 2 (a) to (b) to (c)), so that during decompression wecan first progressively decode the border and
possibly skip the internal part (recall the simplification/(de-)compression scheme in Sec. 2.1). Note that
compression and decompression are in thesameorder, which must be thereverseorder of simplification.
Therefore, if we want to decompress the internal vertices, the border vertices must be firstfully decom-
pressed (see Fig. 2 from (c) to (b)), but then the internal vertices can be decompressed progressively to the
desired level only(Fig. 2 from (b) to (a) but we can stop in between).

The major technical challenge is how to deal with theborder trianglesthat lie across subtrees. Suppose
subtreesBi andBj share some border triangles (see Fig. 3(c)), whereBi is compressedbeforeBj and thus
a prefix-dependent subtree ofBj . As pointed out in Sec. 2, employing the idea of [8] to duplicate the border
triangles needs to store the duplicate(s) and the extra information togluecopies of the same vertex, and thus
the scheme has too much coding cost in multiresolution compression. So we only keeponecopy for each
border triangle.

Now we consider the process of progressively compressing/decompressing the borders. Observe that
Bi andBj can each be fully refined and/or fully simplified (to a single point), resulting in four “end cases”
betweenBi andBj , with two “end versions” each (see Fig. 3(a)-(d)). These arethe base cases that we
need to support. SinceBi is compressed beforeBj and the decoder must follow the same order, during
decompression we start from Fig. 3(a) and first progressively decodeBi fully to obtain (b) in the figure.
We then continue to progressively decodeBj fully to obtain (c). Finally, if we do not needBi in its full
version, we can progressivelycollapsevertices ofBi back (in the reverse order of decoding/refinement),
eventually obtaining (d), atno extracoding cost. Of course, from (c) we can collapse vertices inBi to
some desired level and also collapse vertices inBj to another desired level, to obtain connectivity between

any intermediate versions ofBi and ofBj, at no extracoding cost. In this way, we can achieve very good
coding efficiency while covering all possible connectivities. Observe that this scheme imposes aprefix
dependencyof Bj on Bi: decompressingBj depends on fully decodingBi first, which in turn depends
on fully decoding its prefix-dependent subtrees, and so on, and we need to resolve all these dependencies
first.2 As for compression, it is important to see that since we only keeponecopy for a border triangle,
the connectivity iscarried overas wepropagatethe triangle across the subtrees. How to propagate border
triangles at their various stages (as in Fig. 3) is a major technical component of our algorithm. We describe
our technique in more details below.

3.2. Out-of-Core Progressive Compression

We present our out-of-core progressive compression algorithm. We assume that the input mesh is in the
form of a triangle soup; for an indexed mesh we first perform anout-of-corepointer de-referencing[17] via
a few external sortings to obtain a triangle soup. We remark that the form ofstreaming mesh[10] is also
easy to use for our technique, and yet triangle soup providesa self-complete information for each triangle,
making our task of propagating border triangles a little biteasier to describe.

After an initial quantization, we proceed the compression in two phases. In the first phase, we construct
the first-layer treeA, distribute the input triangles to the leaves ofA, simplify the coarse mesh ofA and
compress it. In the second phase, we process the leaf cells ofA and compress their subtreesB1, B2, · · · one
at a timein that canonical order, with prefix dependencythe main consideration.

3.2.1. First Phase of Compression

In this phase, we scan through the triangles one by one. For each trianglet, we locate the leaf cells of the
treeA containing the three vertices oft. In the process, weincrementallyconstruct the treeA: if the leafu
containing the current vertex does not exist, we growA by adding the missing nodes in the path from the
root tou. Recall thatA stops at levelL. For each current trianglet, we assign it to asingle leaf of A, and
classify it as aninternal or border triangle of that leaf. If all vertices lie in the same leaf,t is internal and
is assigned to that leaf; otherwise,t is border and is assigned to the leaf with thesmallestnode ID. For a
border trianglet, we also add the corresponding connectivity information, connecting between two leaves
of A that contain vertices oft.

When we scan and distribute the triangles to the leaves ofA, the distributed triangles collectively can
exceed the main memory size and need to be written to disk. We use the strategy of [5] to perform the same
process twice: once we count how many triangles are assignedto each leaf without actually putting them
out so that the starting position for each leaf in the file is known, and in the second time we actually write
out the triangles.

Now we proceed to compress the first-layer mesh corresponding to A. Recall from Sec. 2.1 that we
record the number of vertices lying in each node cell ofA for geometry coding. Instead of the top-down
process in Sec. 2.1, we use a bottom-up process: we assign number 1 to each leaf ofA (since the leaf has one
(collapsed) vertex in the coarse mesh, the cell center), andfor each internal node we assign its number as
the sum of the two child numbers (treating a null child as having number 0). In the same bottom-up process,
we also simplify the connectivity progressively. Finally,we perform a top-down breadth-first traversal onA

and complete the geometry as well as the connectivity encoding.
When the compression is finished, the structure of the mesh for the second phase of compression is

described solely by the subtreesBi and their neighbors. It is no longer necessary to keep the treeA (and the
coarse mesh) in main memory and we can free such memory.

2We use a plain queue to find all subtrees whose borders need to be decoded, sort these subtrees by increasing subtree IDs, and
then decode their borders in that order.

B i

B j

B kv1

v3

v2

rk

v2v1
v3

r i r j

B i B j B k 2v : t = {v , r } 1 k
3v : t = {v , v } 1 2

1v : t = {r , r } j k

t

Figure 4:Processing a border trianglet with three vertices

lying in Bi, Bj andBk, with i < j < k (i.e., compression

order isBi thenBj thenBk).

Figure 5:First-layer mesh of Lucy with different depths of

the first-layer treeA. Quantization precision (p value): 6, 7, 8

from left to right.

3.2.2. Second Phase of Compression

In the second phase of compression, we process the second-layer subtreesB1, B2, · · · in that canonical
order (see Fig. 1) one at a time. For eachBi, after loading to main memory the triangles assigned toBi,
with theborderandinternal triangles kept separately, we perform the following tasks:(1) process the border
triangles;(2) process the internal triangles;(3) simplify the mesh ofBi; (4) encode the mesh ofBi; (5) free
resources. We now describe the details of these tasks.
Task 1: Processing the Border Triangles
In this step, we scan through the border triangles one at a time, addborder verticesto Bi, incrementally
construct the portion of the k-d treeBi that correspond to its border vertices, and add the connectivity
information to these vertices. Recall that we define a vertexlying in Bi to be border if it has an edge
connecting outside ofBi, and internal if all its edges connect to vertices lying inBi (see Fig. 2). In the
process, we also add border vertices to theneighboringsubtreesBj ’s, j > i (i.e.,Bj will be processedlater
thanBi), grow the border-vertex portion of the k-d treesBj ’s, and add the connectivity information to these
border vertices.

Let t = (v1, v2, v3) be the current border triangle being processed. Recall thatt has its three vertices
located in different second-layer subtrees, and is assigned only to the subtree with the smallest ID. Suppose
thatv1 lies in Bi, v2 in Bj , andv3 in Bk, with i < j < k, meaning that the compression order isBi first
thenBj and thenBk (see Figure 4); note thatt belongs toBi and thusi is the smallest amongi, j, k. For
each second-layer subtree, we have a localborder vertex array, created when needed in the first time, to
keep the border vertices, where for each border vertex we also include its coordinates in the array. When
processingt, we locatev1 to a leaf of the k-d treeBi (while incrementally growBi), and addv1 to the border
vertex array ofBi. We also add the connectivity information due tot: we store the information oft in v1.
Since the connectivity coder of [6] needs the position of theneighboring vertices to perform prediction, the
connectivity stored inv1 has to be able to get the positions ofv2 andv3. However, decoding needs to follow
the same encoding order; at the timeBi is decoded,Bj andBk arenot decoded/refined yet and each is still
a single root noderj (rk), with v2 collapsed to the cell center ofrj andv3 to the cell center ofrk. Therefore,
in v1 we storet = {rj , rk} (see Fig. 4), meaning thatt = (v1, rj , rk).

Moreover, wepropagatetrianglet to bothBj andBk so that the information oft is available when later
we compressBj andBk. Similar to the above process, we locatev2 to a leaf of the k-d treeBj (while
incrementally growBj), addv2 (including its coordinates) to the border vertex array ofBj , and store the
connectivity oft to v2, now recordingt = {v1, rk}, wherev1 is recorded by
(a) an encoding of the node ID of the leaf of the k-d treeBi locatingv1 (for the connectivity as well as the

geometry ofv1), and
(b) an index ofv1 in the border vertex array ofBi (for the coordinates ofv1, to be used by the encoder later
when we processBj).
(We remark that (b) is redundant of (a) and willnotbe encoded into the compression stream. We include (b)
here just to make the task of releasing resources easier; seeTask 5 below). Observe that this recording oft

(with (b) skipped) reflects the scenario whenBj is decoded, whereBi has been refined but notBk. We then
perform a similar process forv3 in Bk, now recordingt = {v1, v2} (see Figure 4).

Observe that due to this propagation process, if the currentsubtreeBi hasi > 1, then some of its border
vertices may have already been propagated from previous subtrees, before we start working onBi. Such
propagation is only tolater subtrees but never to previous subtrees, so when we finish processing the border
triangles assigned toBi, its border vertices are finalized. The k-d treeBi constructed so far corresponds to
the border vertices. Also, the border vertex array may contain duplicated copies of the same vertex, each for
a different triangle sharing the vertex.
Task 2: Processing the Internal Triangles
We scan the internal triangles ofBi one at a time. For each current trianglet, we locate the three vertices of
t to leaves of the k-d treeBi while incrementally growingBi, and add the connectivity information. If any
newvertex is created, then it is an internal vertex and is added to the localinternal vertex arrayfor Bi. Note
that since only newly created vertices are added to the array, there is no duplication in the array.
Task 3: Simplifying the Mesh
Recall that simplification is done by going level by level up in the k-d treeBi, and that encoding/decoding
will be done in the reverse order, top down. Since in decompression we want to decompress the border
vertices first and then the internal vertices (so that we can skip the internal vertices if not needed), the sim-
plification must be performed reversely, internal verticesfirst and then border vertices (recall from Fig. 2).
To simplify the internal vertices, we go up from the leaves ofBi that are internal vertices, until finally we
collapse all internal vertices to a single point at the cell center of the root. In the process, we mark all the
nodes traversed asinternal so that later we can visit them during internal-vertex encoding. We then simplify
the border vertices together with this cell center, going upfrom the border-vertex leaves until all vertices are
collapsed to the root cell center. Again we mark all the nodestraversed asborder to be used later during
border-vertex encoding. Note that a tree node can be markedboth internal and border (when it is a common
ancestor of an internal and a border leaves). Essentially, the tree nodes markedinternal make an “internal”
k-d tree, and similarly for a “border” k-d tree; the k-d treeBi is just the union of the two k-d trees. We
keep two separate vertex-number counts on the tree nodes, one for the “internal” k-d tree and the other for
the “border” k-d tree, for encoding the vertex geometry as well as the tree structures of the two trees.
Task 4: Encoding the Mesh
Now encoding is easy. We first encode the border vertices ofBi by a breadth-first traversal on the border
k-d tree, and then we encode the internal vertices ofBi by a breadth-first traversal on the internal k-d tree.
Note that in the process we encode both geometry and connectivity, where the connectivity can of course
connect between border and internal vertices, among others.
Task 5: Releasing Resources
After encoding the mesh ofBi, we want to release the main memory resources that are no longer needed.
The pieces of information that are still needed are related to theborder vertices, which will be referenced
from other second-layer subtrees later (other informationcan be released right away). Referring to Figure 4
for example, we see thatv1 of Bi will still be needed when later we processBj andBk, and when we finish
with Bj, v2 of Bj will still be needed later when we processBk. Now we discuss when to release the border
vertices of a subtree. SupposeBm is aneighboringsubtree ofBi, i.e., there is a border triangle connecting
them. We callBm a prefix neighborof Bi if m < i and asuffix neighborif m > i. Clearly, the border
vertices ofBi can be released when its largest-ID suffix neighbor has been processed. In general, for each
subtree we store the subtree IDs of its prefix and suffix neighbors. When we finish processing the current

Mesh Dawn Night Lucy David St.Matthew

V (M) 3.43 11.05 14.03 28.18 186.84
T (M) 6.59 21.57 28.06 56.23 372.77
Ply (MB) 134 447 508 1,127 7,475

time (m) 1.58 5.03 6.7 15.37 68.6
size (MB) 113 370 482 965 6400

Table 1:Mesh statistics. The lower part shows the time to quantize (to 16 bits) and convert to triangle soup, and the resulting size.

Mesh bit rate (bpv) compression time (min) / memory footprint
p=7 p=8 in-core p=7 p=8 in-core

Dawn 24.00 25.99 20.77 2.1 2.53 / 72MB 2.77 / 1.6GB
Night 19.87 21.42 17.84 6.07 7.23 / 83MB 9.4 / 4.8GB
Lucy 19.81 21.2 18.12 8.47 9.37 / 68MB 13.13 / 6.0GB
David 15.74 16.73 14.61 14.05 15.08 / 51MB 833 / 12.7GB
St.Matthew 12.41 12.94 N/A 92.35 125.03 / 107MB N/A

Table 2:Compression results. Initial quantization is 16 bits per coordinate. The memory footprint forp=7 is similar top=8 and

is not shown. Our approach ran under0.5GB of RAM and the in-core method ran under12GB of RAM.

subtreeBi, we check to see if any of its prefix neighbors can be released.This is done by checking them
one by one, and see ifBi is the largest-ID suffix neighbor of any of them.

4. Experimental Results

We have implemented our technique in C/C++ and ran our experiments on two Dell Precision PCs; they
have exactly the same configuration except for the RAM sizes (0.5GB vs. 12GB): two 3GHz Intel Xeon
CPUs, Nvidia Quadro FX 4500 graphics, 300GB SCSI 10K rpm disk, and a 64bit Linux OS. We show in
Table 1 the datasets used3, which we initially quantized to 16 bits for each vertex coordinate and converted
to triangle soup via out-of-core pointer de-referencing [17].

In order to evaluate our algorithm, we want to compare with its in-core counterpart [6]. To this end, we
took our program and set the first-layer treeA to haveL = 48 levels, i.e., letting treeA in main memory to
be the entire k-d tree; we call this programinc and oursooc. Note thatinc still keeps the input triangle
soupon diskand the only in-core working set to process the input is the space to hold one triangle, so that
the entire main memory is devoted to treeA. Forinc, this way is even a bit more space-efficient than using
streaming mesh [10] since there is no need to keep unfinalizedvertices. In the following, bothooc andinc
ran on the same triangle soup as inputs, under RAM sizes 0.5GBand 12GB respectively.

To see how many levels the treeA should have inooc, we setL to be 18, 21, 24 (corresponding to
quantization precision ofp bits per coordinate at the leaf level ofA, with p = 6, 7, 8; recall thatL = 3p)
and ran it on Lucy. We see that smaller value ofL (p) made better compression time and ratio (7m32s,
8m29s, 9m22s forp = 6, 7, 8 with bit-rates 18.98, 19.81, 21.2 bpv), but worse image quality (see Fig. 5).
We recommend to usep = 8, and possiblyp = 7 for better compression if we are willing to tolerate a worse
quality in the global first-layer mesh.

Next, we compared the compression performance ofooc (with p = 7, 8) andinc, and show the results
in Table 2. We see that our compression ratios are worse (on anaverage 11% worse forp = 7 and 19%

3The datasets are courtesy of the Stanford Graphics Lab. For St. Matthew the ply size shown is the total of the original 12
self-complete indexed sub-files without removing the duplicated vertices.

Mesh Dawn Night Lucy David St.Matthew

Uniform LOD (0.5GB RAM) /Varying LOD (0.5GB RAM) /In-core (12GB RAM)
time (m) 0.03/0.01/0.92 0.11/0.08/2.48 0.4/0.35/3.25 0.73/0.62/5.47 2.5/2.38/ N/A
tri (M) 0.30/0.26/6.59 0.47/0.33/20.57 0.71/0.41/27.6 1.68/0.52/54.68 3.36/1.09/ N/A
mem (MB) 79/78/829 105/92/2662 134/103/3379 253/112/6144 468/297/ N/A

Table 3:Decompression results (wherep = 8). We show our selective decompression with uniform and varying LODs, compared

with the in-core method.

worse forp = 8) due to the support of selective decompression. However, our memory footprint was quite
small—only 107MB for St. Matthew, whileinc had a large footprint for treeA—about 10 times the mesh
size, which is not too surprising for multiresolution data structures given that the incident triangles and
incident edges are explicitly stored with each vertex in thestructure. For David,inc already resulted in
thrashing, since the memory access of traversing treeA is quite random. This shows that our two-layer
scheme is very effective: we can greatly reduce the memory footprint even with the same implementation
for the incidence information.

For selective decompression, in principle we can select thesubtrees manually or automatically by view-
dependent level-of-detail (LOD) techniques [15]. Since our focus in this paper is on compression/decompression,
we defer automatic selection to future work. Currently, ourimplementation supports manual selection of
subtrees via a mouse click, where the LOD can either vary gradually (varyingLOD) or stay the same (uni-
form LOD) when moving away from the clicked subtree through neighboring subtrees up to some degrees
of neighboring. We show the results in Table 3, where the mostdetailed level was set to 16 bits of precision
per coordinate (except for St. Matthew uniform LOD (14 bits); for St. Matthew varying LOD it was still
set to 16 bits). For varying LOD, the clicked subtree, its immediate neighboring subtrees (the degree-1
neighbors) and the neighbors of degree-1 neighbors (the degree-2 neighbors) had the same tree depth (at
16 bits of precision); the next-degree (degree-3) neighbors were at tree depth two levels up, the degree-4
neighbors were at tree depth two more levels up, and so on, until 18 subtrees were selected. We remark
that decompressing the first-layer treeA was always less than 1 second. Also, in the in-core approach,the
encoder needs to keep the entire tree but the decoder only keeps the current level, and thus the memory
footprint for decoder was only about half of that for encoder. Note that with the original in-core approach, it
is necessary to decompress the whole mesh up to the specified LOD. The number of decompressed triangles
is also important, since a lower number results in faster andsmoother interaction with the decompressed
mesh. We show the corresponding images of our selective decompression in Figure 6.
Comparison with other out-of-core methods
Although our compression ratio is (moderately) worse thaninc, it is comparable to the state-of-the-art
out-of-core, single-resolutionapproaches. Taking ourp = 8 result for St. Matthew (Table 2), we are 21%
worse (12.94 vs. 10.67 bpv) than [9] (which neither preserves layout order nor supports selective decom-
pression), 9% worse (12.94 vs. 11.82 bpv) than the order-preserving approach [11] (which does not support
selective decompression), and 77% better (12.94 vs. 22.9 bpv) than the order-preserving, random-accessible
technique [19] (which also supports transparent mesh access and high cache utilization), while our method
is multiresolution and supports selective decompression.

References
[1] P. Alliez and C. Gotsman. Recent advances in compressionof 3D meshes. InAdvances in Multiresolution for Geometric

Modelling, pages 3–26, 2005. Springer-Verlag.

[2] K. Cai, Y. Liu, W. Wang, H. Sun, and E. Wu. Progressive out-of-core compression based on multi-level adaptive octree.In
Proc. ACM Virtual Reality Continuum and its Applications, pages 83–88, 2006.

Figure 6: Selective decompression (p = 8). Datasets (left to right): David and St. Matthew. Each dataset from left to right:

uniform LOD (global and zoom-in views), and varying LOD (zoom-in view).

[3] S. Choe, J. Kim, H. Lee, S. Lee, and H.-P. Seidel. Mesh compression with random accessibility. InProc. Israel-Korea
Bi-National Conference, pages 81–86, 2004.

[4] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno. Batched multi triangulation. InProc. IEEE
Visualization, pages 207–214, 2005.

[5] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. External memory management and simplification of huge meshes. In
IEEE Transactions on Visualization and Computer Graphics, 2003.

[6] P.-M. Gandoin and O. Devillers. Progressive lossless compression of arbitrary simplicial complexes. InACM SIGGRAPH
2003 Proceedings, pages 372–379, 2002.

[7] E. Gobbetti, F. Marton, P. Cignoni, M. Di Benedetto, and F. Ganovelli. C-BDAM—compressed batched dynamic adaptive
meshes for terrain rendering.Computer Graphics Forum, 25(3), 2006. Special Issue for Eurographics ’06.

[8] J. Ho, K. Lee, and D. Kriegman. Compressing large polygonal models. InProc. Visualization, pages 357–362, 2001.

[9] M. Isenburg and S. Gumhold. Out-of-core compression forgigantic polygon meshes. InProc. SIGGRAPH 2003.

[10] M. Isenburg and P. Lindstrom. Streaming meshes. InProc. IEEE Visualization, pages 231–238, 2005.

[11] M. Isenburg, P. Lindstrom, and J. Snoeyink. Streaming compression of triangle meshes. InProc. Symposium on Geometry
Processing, pages 111–118, 2005.

[12] J. Kim, S. Choe, and S. Lee. Multiresolution random accessible mesh compression.Computer Graphics Forum, 25(3), 2006.
Special Issue for Eurographics ’06.

[13] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginztion, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The digital Michelangelo project: 3D scanning of large statues. InSIGGRAPH 2000, Computer
Graphics Proceedings, pages 131–144, July 2000.

[14] P. Lindstrom. Out-of-core construction and visualization of multiresolution surfaces. InProc. Sympos. Interactive 3D Graph-
ics, pages 93–102, 2003.

[15] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R. Huebner. Level of Detail for 3D Graphics. Morgan-
Kaufmann, 2002.

[16] J. Peng and C.-C. J. Kuo. Geometry-guided progressive lossless 3d mesh coding with octree (OT) decomposition.ACM
Trans. Comput. Graph., 24(3):609–616, 2005. Special Issue for SIGGRAPH 2005.

[17] C. Silva, Y.-J. Chiang, J. El-Sana, and P. Lindstrom. Out-of-core algorithms for scientific visualization and computer graphics,
2002. Tutorial Course Notes, IEEE Visualization 2002. http://cis.poly.edu/chiang/Vis02-tutorial4.pdf.

[18] S.-E. Yoon and P. Lindstrom. Mesh layouts for block-based caches.IEEE Trans. Vis. Comput. Graph., 12(5):1213–1220,
2006. Special Issue for Visualization ’06.

[19] S.-E. Yoon and P. Lindstrom. Random-accessible compressed triangle meshes.IEEE. Trans. Vis. Comput. Graph.,
13(6):1536–1543, 2007. Special Issue for Vis ’07.

