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ABSTRACT nectivity, rather than thgeometryinformation. As a results,

In this paper we propose a novel geometry compressiowh“e connectivity compression already achieves an impres-

technigue for volumetric datasets represented as tetrahedy& compression rate of 1-2 bits per triangle for triangle
meshgs. We focus on a commonly ?Jsed technique for pr neshes [23, 19, 1, 24] and 2.04-2.31 bits per tetrahedron for

dicting vertex geometries via a flipping operation using arfetranedral meshes [8, 25], progress made in compressing the
i pgeometry information has not been equally impressive. For

- . PO tetrahedral mesh, typically each floating-point coordinate
efficiency of the flipping operation is dependent on the ordef ' ; o X
in which tetrahedra are traversed and vertices are predict ﬁf'rﬁt q“ant'fzed to a 16-bit ||nt§ger r(]thus Ais b'tsl per vertéax
accordingly. We formulate the problem of optimally (travers- obrt e?:gvg_ln ormationnotinc LIJ ('j'f‘g t ﬁ sca ellr va ‘fes)' an
ing tetrahedra and) predicting the vertices via flippings as 220Ut 30 bits per vertexnttincluding the scalar values) are
combinatorial optimization problem of constructingcan- required after compression [8]. Given that the number of

strained minimum spanning tre®/e give heuristic solutions tetrahedral cells is about 4.5 times the number of vertices
for this problem and show that we can achieve predictioﬁn typical tetrahedral meshes and that the connectivity com-

efficiency very close to that of thenconstrainedninimum pressu)tn ratio is about 2 b|kt)s ;?er :ﬁtradhed_ront,_ It |sbc[[tt3|ar th?(t
spanning tree which is an unachievable lower bound. We aIs%eome ry compression IS by tar the dominating bottienec
at needs to be worked on if we hope to obtain a significant

show significant improvements of our new geometry comd ; ; -
pression over the state-of-the-art flipping approach, whosinProvementin the overall compression efficiency.
traversal order does not take into account the geometry of In this paper, we propose a novel geometry compres-
the mesh. sion technique for tetrahedral volume data. Our approach
is based on an extension of tfigping algorithm first in-
1. INTRODUCTION troduced in [24], which, originally working for 3D triangle
meshes, traverses the triangles and predicts the position of
In the past several years, new challenges for scientific vistthe next vertex via #lipping operation using th@arallelo-
alization have emerged as the size of data generated from tgeam rule This flipping algorithm [24] has been dominant
simulations has grown exponentially. The emerging demangnd widely considered as state of the art for geometry com-
for efficiently storing, transmitting, and visualizing such datapression, and has been adopted for the MPEG-4 standard for
in networked environments has motivated graphics compresnesh geometry coding [21]. The flipping algorithm can be
sion for 3D polygonal models and volumetric datasets to beextended to work for tetrahedral meshes in a similar manner,
come a focus of research in the past several years. For voltraversing the tetrahedra and predicting the position (as well
metric data, the most general classrisgular-grid volume  as the scalar value) of the next vertex via a flipping opera-
data represented astetrahedral mesh It has been pro- tion, now instead of flipping across the center of the com-
posed as an effective means of representing disparate fietdon edge shared by the current and the new triangles, flip-
data that arise in a broad spectrum of scientific applicationging across the center of the commiiangle faceshared
including structural mechanics, computational fluid dynam+y the current and the new tetrahedra. This flipping exten-
ics, partial differential equation solvers, and shock physicssion, combined with the best connectivity coder [8, 25], is
A tetrahedral-mesh dataset consists of the following twaalso considered as state of the art for geometry compression
components:geometry—the 3D coordinates and thdata-  of tetrahedral meshes. However, such encoding is dominated
attribute information (such ascalar valuesn our case) of by the connectivity coder, and traverses tetrahedra in an order
the mesh vertices, armbnnectivity—the incidence informa-  that ignores the geometry of the mesh, resulting in a geome-
tion specifying the edges, triangle faces, and tetrahedral celtsy compression ratio that is far below optimal as we show in
connecting the mesh vertices. this paper.
Although there has been a significant amount of research  The main idea behind our technique is that the effi-

dhon? on graprr:ics complresfsion, rgost techniques reported {fancy of the flipping operation is dependent on the order in
the literature have mainly focused on compressingcti'®  \hich tetrahedra are traversed and vertices are predicted ac-
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the unconstrainedninimum spanning tree which is an un- andd is the center ofAabcgiven byd = (a+b+c)/3. We
achievable lower bound. We also show significant improvepredict the position (and scalar valueydfom x asy’, where
ments (up to 30.2%) of our new geometry compression ovethe vector(x,d) equals to the vectdd,y'), i.e.,d —x=y —d
the state-of-the-art flipping approach, whose traversal orddand thusy/ = 2d — x), with theprediction error y—y. Sim-

is solely decided by the connectivity coder. ilarly, we can predick fromy asx’, wherex' = 2d —y, with
the prediction errox — x'. We callx andy anantipodal pair
2. PREVIOUS WORK since they can predict each other by flipping across the same

o _face. Also, the prediction erroys-y andx— X’ are the same

There has been a significant amount of work on compressingoth equal toc+y — 2d).
polygonal meshes [5, 23, 9, 19, 14, 1, 10, 15, 17, 24]. Much  oyr main idea is built on the observation that there are
of this work has mainly focussed on compresstognectiv-  many ways to predict a vertex essentially, each tetrahedron
ity information. Compression techniques for polyhedral VO"havingv as a vertex gives rise to a distinct vertesuch that
ume meshes have also been widely studied [22, 8, 18, 25} andy are an antipodal pair (and gives a distinct predic-
again the main focus has been on connectivity compressiofgon for v). For the purpose of geometry compression, our
As mentioned before, these techniques achieve an impressiygg is to predict each vertenceand to minimize the total
compression performance of 1-2 bits per triangle for trianpyediction error for the whole mesh. This can be formulated
gle meshes [23, 19, 1], and 2.04-2.31 bits per tetrahedron ffs 5 combinatorial optimization problem, namely, the prob-
tetrahedral meshes [8, 25]. lem of finding aminimum spanning tree (MS®h a graph
_ There are relatively few results that focus on compressg — (v, E) where the vertex sat consists of the vertices of
ing the geometry information. Devillers and Gandoin [6, 7]the tetrahedral mesh, and the edgeBatonsists of edges
have proposed compression techniques that are driven by the y) for each antipodal paix andy. Since the prediction
geometry information, for both triangle meshes and tetrahesrrgrsx — ¥’ andy—y are the same, each edgey) € E is
dral meshes. They only consider compression of vertex cQindirectedwith edge cost the prediction erree— X' (thusG
ordinates but not the associated scalar values for the caseigfanundirected weighted graph).
tetrahedral meshes. Le al.[17] proposed th@ngle ana- This MST problem is not yet the corrected formulation
lyzerapproach for traversing and encoding polygonal mesheg the problem, however. Notice that in order to flip from a
consisting of triangles and quads. _ vertexx to predict its antipodal vertex across the common

The most popular technique for geometry compression ofrjangle face/\abg the vertices, b, ¢, as well as;, need to be
polygonal meshes is tiégpping algorithm based on thear-  known (visited) first. This is a causality constraint imposed
allelogram rulefirst introduced by Touma and Gotsman [24] py the flipping operation. Hence we introduce the notion of a
as mentioned before. Isenburg and Alliez [12] extended thgonstrainedVST (CMST) which admits a traversal that does
parallelogram rule so that it works well for polygonal sur- ot yiolate the causality constraint. Our final formulation of
faces beyond triangle meshes. Isenburg and Gumhold [1¢}e problem, then, is to find a CMST @) where each edge
applied the parallelogram rule in their out-of-core COMpresyy v) e G connecting antipodal verticesandy is associated
sion algorithm for polygonal meshes larger than can fit inyith constraint vertices #, andc that define the common
main memory. Other extensions of the flipping approachyjangle facerabcto be flipped across.
for compressing polygonal surfaces include the work given 17 <ojve the CMST problem d@, we propose a heuristic

in 16, 3, 2]. . , algorithm to compute an (approximate) CMST that is a fea-
For volume compression, Isenburg and Alliez [11] ex-gjhle solution but the cost may not be optimal. Our next task

tended the flipping idea to hexahedral volume meshes. Ag i, yse the constructed CMSTTto traverse the tetrahedra
mentioned in Section 1, the basic flipping approach of [24} 4 predict vertices accordingly, in an order satisfying the

can be extended to tetrahedral meshes as well, which, Cc’%ausality constraint of the flipping operations, to perform the

bined with the best connectivity coder [8, 25], is consideredyqometry compression. Ideally, we would like to traverse the

as state-of-the-art geometry compression technique for tetr§wueT on the fly whileT is being constructed, but it turns out

hedral meshes. We show in Section 4 that our new geometiyat g,ch traversal order is very expensive to encode. There-
compression achieves improvements of up to 30.2% overthq%re’ we first complete the construction ©f and then tra-

approach. _ _ . verseT in a separate pass, in an order that still satisfies the
There are other compression techniqueségular-grid  c5ysality constraint and yet is much cheaper to encode. Such
volume data (e.g., [20] and the references therein). All thesgayersal results in pseudo-CMS;Twhich in fact is a forest
approaches do not consider compressing the vertex coordyy,q may have a slightly higher prediction cost tFadue to
nates, since such information is not needed for regular gridgye starting cost of each tree in the forest. Tverall en-
coding costincluding the starting costs and the prediction
3. OUR APPROACH costs, however, is greatly reduced in the pseudo-CMST com-
pared with the overall encoding cost neededTorFinally,
the geometry coder does not visit all tetrahedra in the mesh,
As mentioned before, our approach is based on an extensiaince each vertex is spanned exactly once, where spanning
of the flipping algorithm [24] from 3D triangle meshes to a vertex corresponds to visiting a new tetrahedron, and typi-
tetrahedral meshes: we traverse the tetrahedra and predict ttely the number of tetrahedra is about 4.5 times the number
position (as well as the scalar value) of the next vertex via af vertices in a tetrahedral mesh. We still need to “collect”
flipping operation, which flips across the center of the comthe left-over tetrahedra for the purpose of connectivity com-
mon triangle faceshared by the current and the new tetra-pression. We develop an algorithm to build a pseudo-CMST
hedra. Specifically, suppose a,b,c) and(y,a,b,c) aretwo and collect the left-over tetrahedra in the same pass, in an
face-adjacent tetrahedra sharing a common triadggdc  interleaving manner; this completes both geometry and con-

3.1 Problem Formulation and Algorithm Overview



nectivity encoding at the same time. In summary, our overall Data || #tetra.] #vert. || MST | CMST | Diff. |

algorithm performs the following steps: Spx 12936] 20108[ 8.94 | 10.02 | 12.08%
1. Form the grapi®. Blunt 187395| 40960| 8.06 | 8.66 | 7.44%
2. Construct an approximate CMSTon G. Comb || 215040| 47025| 6.16 | 6.24 | 1.30%

3. TraverseT in another pass, build a pseudo-CMST and_Post 513375] 109744 7.82 | 8.13 | 3.96%
collect the left-over tetrahedra, and complete both geonj-Delta || 1005675| 211680| 6.64 | 7.00 | 5.42%
etry and connectivity encoding. Cyll 615195| 131072| 5.81 | 6.27 | 7.92%

In the following, we describe the details of Steps 2 and 3. | Cyl10 || 615195] 131072 13.09| 13.46 | 2.83%

3.2 Heuristic Algorithm for CMST ) . - .
Table 1: Comparison of entropy of prediction errors (includ-

Given the graplG = (V,E) where each edgg,y) € E con-  ing x-, y-, z- and scalar values, in bits per vertex, b/v) with
necting antipodal verticeg andy is associated with the constrained and unconstrained MSTSs.
constraint vertices, b, ¢ defining the common triangle face
Aabcto be flipped across, our heuristic algorithm to build
an approximate CMST on G is a modifiedPrim’s algo- The main idea of the algorithm is that each tetrahedron
rithm [4]. Initially, for each edgéXx,y) with constraint ver-  has at most four faces to flip across, which is cheap to encode,
ticesa,b, andc, we establish didirectional link between  and each potential flipping corresponds to an exlg&. The
(x,y) and each ofa,b, andc, so that from each edge we constraint vertices of are among the vertices of the current
know its constraint vertices, and from each vertex we knowetrahedron and are already visited, and thus the causality
the edges constrained by this vertex. constraint is satisfied. If the face-neighboring tetrahedron

We start constructing by including the four vertices corresponding t@ has been visited before then we ignore
of a tetrahedron intd’, which enables initial predictions. t. Otherwise; is unvisited and let be the new vertex of
Throughout the process, we use a priority Qu@uU® main-  t to be predicted bye. If v has not been visited arelbe-
tain the vertices not yet addedTo The key of each vertex  |ongs to our constructed CMST, then we include into the
in Q is the minimum cost among the costs of thid edges  pseudo-CMST, visit the new tetrahedrgnpredictv via e,
(x,y) € G through whichx can be added t&, where(x,y) is  code the prediction error, and recursively proceed ftoif
valid if its constraint vertices &, c, as well agy, are already v has not been visited batis notan edge off, then we ig-
in T. The cost ok is infinity if no valid edges exist fox. noret ande—v will not be predicted viae (and tetrahedron

In each iteration whileQ is not empty, we perform the t and vertexv will be traversed later from some other paths).
following operations. (1) Extract the current minimum-costin the remaining case, whewehas been visited before, we
vertexv from Q, and markv as included intol. (2) Up-  alwaysincludee into the pseudo-CMST witho prediction
date the key values of the verticesQthat are “influenced”  cost visit the new tetrahedrarand proceed recursively from
by v. Namely, we need to find the edges®fthat become t. Such no-cost edgeis called gpseudo-edgéand hence the
valid by the addition ofv into T, and perform the necessary pseudo-CMST).
decrease-kepperations on the corresponding verticeQin | general, there are three faces to expand from the cur-
The candidates for such newly valid edges can be classifigént tetrahedron (four faces for a starting tetrahedron). Our
into two types: the edges @ incident onv, and the edges  a|gorithm recursively expands in one direction, and the next,
of G with v a constraint vertex. In either case, we can findip g depth-first manner. For the purpose of connectivity
such candidate edges via bidirectional links fronand use  compression, we also need to collect those left-over tetra-
the bidirectional links from the candidate edges to the correnedra not visited by the above process. Such tetrahedron-
sponding vertices to check their marking status. Note that igollection operations are interleaving with the above process
the entire process each edge®is examined at most five s that we avoid the cost of specifying where to “insert” the
times, so that the overall complexity is the same as the origieft-gver tetrahedra. When a new tetrahedtofwith new
nal Prim’s algorithm. o o vertexv) is visited, we try to recursively expand from the

In case the extracted minimum-cost yeﬂeb(as infinite face_neighboring tetrahedrabfone by one, by app|y|ng the
cost (meaning that cannot be added 6 via a valid edge), ahove process. When this is complete, we look at all the
we start a new tree by the same process (such case occurigahedra sharingthat are only edge-neighborstoér only
very rarely in our experiments). In this way, we can alwaysyertex-neighbors of, and collect those that are left-over but

span all the vertices. have all four vertices already visited. Note that we ro
- . ) recursively expand from such left-over tetrahedra. When the
3.3 Building a Pseudo-CMST and Final Encoding algorithm can no longer proceed and there are still unvisited

Now we describe the last step of our encoding algorithmyertices, we start a new tree by the same procedure. In this
From Section 3.2, we see that traversing the constructeday, all the vertices and tetrahedra are visited.

CMSTT by the order we growr is afeasibleflipping traver-

sal. However, such order grows the boundary of the sub- 4. EXPERIMENTAL RESULTS

volume spanned by the curreit arbitrarily according to

which boundary face is the least expensive to flip across, aridle have implemented our new algorithm, and experimented
thus encoding such traversal requires us to specify which ain the datasets listed in Table 1. These are all well-known
the candidate boundary faces to flip across. As the numbeéetrahedral volume datasets, where Cyl10 is time-varying
of such boundary faces is large, this is too expensive to erwith 10 time steps, and Cyll is the same dataset with one
code. This is why we seek an alternative traversal and builtme step. In Spx, only 2896 vertices are referenced by the
a pseudo-CMST to get a better compression efficiency. tetrahedra and thus we removed the remaining vertices in our



Xyz + scalar values Xyz only Trans. Graphics212(3):372-379, 2002. Special Issue

Data Flip | PseT| Gain| Flip | PseT| Gain for SIGGRAPH '02.

Spx || 13.30| 10.02| 24.7% || 9.88 | 7.26 | 26.5% | [8] S. Gumhold, S. Guthe, and W. Straser. Tetrahedral
Blunt || 11.17| 8.70| 22.1%| 8.63| 6.72| 22.1% mesh compression with the cut-border machine. In
Comb| 8.04| 6.24| 22.4% | 6.42| 4.73| 26.3% Proc. Visualization '99pages 51-58, 1999.

Post || 10.85| 8.15] 24.9%| 8.65]| 6.40| 26.0%| [9] S. Gumhold and W. Straser. Real time compression of
Delta | 9.62] 7.01|27.1%] 8.11| 5.78 | 28.7% triangle mesh connectivity. IRroc. ACM SIGGRAPH
Cyll 897 | 6.27| 30.1% | 7.49| 5.23| 30.2% pages 133-140, 1998.

Cyl10 || 18.19] 13.46 | 26.0% — — —J [10] M. Isenburg. Compressing polygon mesh connectivity
[Ave | | [ 25.3% || | | 26.6% | with degree duality prediction. IRroc. Graphics In-
terface pages 161-170, 2002.

Table 2: Comparison of entropy of prediction errors (in b/v)[11] M. Isenburg and P. Alliez. Compressing hexahedral

with different flipping approaches. ‘PseT’ is our pseudo-  Volume meshes. IRroc. Pacific Graphics2002.

CMST, and ‘Flip’ is a state-of-the-art flipping method. [12] M. Isenburg and P. Alliez. Compressing polygon mesh
geometry with parallelogram prediction. voc. Visu-
alization pages 141-146, 2002.

3] M. lIsenburg and S. Gumhold. Out-of-core compression
for gigantic polygon meshesACM Trans. Graphics

The first set of experiments was to evaluate the efficiency 22(3):935-942, 2003. Special Issue for SIGGRAPH

of our heuristic for computing an approximatenstrained 03. i i .
MST (CMST) by comparing it with aninconstrainedMST, ~ [14] M. Isenburg and J. Snoeyink. Face fixer: Compressing
which is a lower bound (albeit unachievable). In Table 1 we  Polygon meshes with properties. Rroc. ACM SIG-
see that the first order entropy of the prediction errors we get ~ GRAPH pages 263-270, 2000.

is almost always within 8% of that achieved by an uncon{15] Z. Karni and C. Gotsman. Spectral compression of
strained MST. On an average the difference is 5.85%. This = mesh geometry. IRroc. ACM SIGGRAPHoages 279—
shows that our resulting CMST is very close to optimal. 286, 2000.

For the purpose of comparisons, we also implemented A6 B, Kronrod and C. Gotsman. Optimized compression
state-of-the-art flipping approach, which traverses the tetra- ~ for triangle mesh geometry using prediction trees. In
hedra using the connectivity coder of [25] and predicts the  proc, Sympos. on 3D Data Processing, Visualization
new vertices via the same flipping operation. In Table 2, and Transmissiorpages 602—608, 2002.
we compare the compression performance of our predictioEL?] H. Lee. P. Alliez. and M. Desbrun. Anale-analvzer: A
technique with this flipping approach. We see that when in tri.angle’—q.uad mésh codéComputér Grgphics F)cl)run'w

cluding the scalar values, our technique can be up to 30.1% ! ; .
more efficient (and 25.3% more efficient on an average), %12(3)'383_392’ 2002. Special Issue for Eurographics

while the improvements are up to 30.2% (and 26.6% on an ) _
average) when not including the scalar values, showing a sig18] R. Pajarola, J. Rossignac, and A. Szymczak. Implant

experiments as they cannot be predicted by the flipping op-
erations. The vertex coordinates and scalar values are ea
quantized to an 8-bit integer before compression.

nificant advantage of our algorithm. sprays: compression of progressive tetrahedral mesh
connectivity. InProc. Visualization pages 299-306,
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