
Multiple-Description Geometry Compression for Networked Interactive 3D
Graphics

Pavel Jaromersky
jpavel@cis.poly.edu

Xiaolin Wu
xwu@poly.edu

Yi-Jen Chiang
yjc@poly.edu

Nasir Memon
memon@poly.edu

Polytechnic University
Brooklyn, New York, U.S.A.

1. Introduction

In web-based visualization applications, such as inter-
net computer games, tele-medicine and so on, 3D geomet-
ric data are typically communicated in a distributed and net-
worked environment. The commonly used TCP/IP network
protocols can provide reliable transmission, but they often
introduce unpredictable delays. On the other hand, users
in these applications can tolerate degradation of rendering
quality when network conditions deteriorate, but not exces-
sive delay or stoppage of animation sequences.

An existing technique for robust streaming of 3D graph-
ics contents over lossy networks is multi-resolution coding
of 3D geometry [8, 7, 2, 4]. An advantage of this approach is
that it uses refinement layers and therefore multiple clients
with different bandwidths can be served by a single unified
code stream. However, there is a dependency between re-
finement layers, called prefix condition. Decoding of a given
layer requires the knowledge of all the previous layers. A
problem in the base layer reception interrupts the stream-
ing all together and voids the remaining layers even though
they are received perfectly.

To overcome this drawback, we propose an alterna-
tive approach to multi-resolution geometry coding, called
Multiple-Description Coding (MDC) of 3D geometry. In-
stead of organizing code stream into embedded layers,
MDC generates several separate descriptions of a geomet-
ric object, called co-descriptions. Each co-description of
MDC can be independently decoded without any knowl-
edge of other co-descriptions. Each extra successfully
received co-description improves the fidelity of recon-
structed geometry regardless of what has been received so
far or in what order.

The MDC coding of geometric data is also desirable
for distributed and networked storage systems. For robust-
ness against hardware and connection failures, geometric
datasets can reside on different disk drives or even on dis-
tant sites. If the datasets are MDC coded, then an applica-
tion can simultaneously retrieve data from different storage

devices. If any subset of the multiple requests are satisfied,
then the rendering process can proceed with the received
MDC coded data, whereas a multi-resolution code will im-
pose a particular order of receiving different layers of data
due to the prefix condition. The latter approach is clearly at
disadvantage because the arrival order of data packets can-
not be controlled by the receiver in these systems.

2. Problem Formulation

MDC geometry compression poses a hard combinatorial
optimization problem even for two co-descriptions. Let us
examine a bipartition of a 3D polygonal mesh M into two
sub-meshes M1 and M2. Each sub-mesh Mi, i = 1, 2 por-
traits an approximation of the input mesh M . Given a distor-
tion measure D, let D(Mi) be the distortion between M and
Mi. Let Pi be the probability of receiving ith co-description
successfully, which is independent of the reception of the
other co-description. Then given M1 and M2 the expected
distortion of the MDC compression is

D̄(M1,M2) = P1P2D(M) + P1(1 − P2)D(M1)
+(1 − P1)P2D(M2)
+(1 − P1)(1 − P2)D(φ) (1)

where D(M) = 0 since the union of M1 and M2 will recon-
struct the original 3D mesh M precisely; D(φ) is a constant
independent of the bipartition assuming that a fixed approx-
imation of M is reproduced if no co-description is received.
Therefore, we can formulate the optimal two-description
geometry compression problem as to minimize

D̄(M1,M2) = P1(1 − P2)D(M1) + (1 − P1)P2D(M2)
(2)

over all possible bipartitions of M . This is a three-
dimensional clustering problem under a complicated distor-
tion measure, which is well known to be NP-complete [5].
Therefore we necessarily resort to heuristic algorithms
to solve the problem. One heuristics is to produce two



sub-meshes M1 and M2 by a down-sampling of the orig-
inal mesh M as uniformly as possible into an inter-
leaved mosaic (see Section 4). The allocation of vertices of
M into M1 and M2 is given by

m1

m2
=

P1(1 − P2)
(1 − P1)P2

, m1 + m2 = m (3)

where m1, m2, and m are the numbers of vertices in the
meshes M1, M2, and M respectively. The motivation is
to make the quality of a co-description proportional to the
probability of successful transmission of the corresponding
channel. If more than two co-descriptions are desired, then
one can always apply a two-description compression algo-
rithm recursively to provide a tree-structured solution.

However, the decoder needs the connectivity informa-
tion that associates vertices in 3D sub-meshes from differ-
ent co-descriptions. The connectivity is a vital side informa-
tion for the decoder to form joint descriptions. Special care
is needed on how to split the vertex set and how to code the
connectivity between the vertices in different sub-meshes.

3. Connectivity Side Information

Most 3D meshes consist of two types of data: connectiv-
ity and geometry. A key issue in MDC geometry compres-
sion is whether it is advantageous, and if so, how to split
connectivity into several co-descriptions.

For simplicity consider only two co-descriptions. Denote
the vertices in the first co-description by 1, 2, . . . m and the
vertices in the second co-description m + 1,m + 2, . . . , n.
Simplified connectivity of the mesh can be described by an
adjacency matrix A: Ai,j = 1 if i and j are connected by
an edge, and Ai,j = 0 if i and j are not connected. The ad-
jacency matrix is symmetric. The original adjacency matrix
A can be split into four sub-matrices as follows:

A =
(

A1,1 B
B A2,2

)
.

From the structure of matrix A it is clear that some part of
original connectivity information (matrix B) will be shared
by the two descriptions. The decoder has to know the shared
connectivity matrix B to merge the two descriptions into
one. The matrix B represents the necessary merge side in-
formation in MDC coding of 3D meshes.

Fortunately, in practice the size of connectivity (less than
2 bits per triangle [10, 9, 3]) is rather small compared to the
size of geometry (20–30 bits/vertex for coordinates quan-
tized to a 16-bit integer [6]). Furthermore, many efficient
methods for encoding the connectivity of a mesh have been
developed [10, 11, 9, 3]. Therefore the merge side informa-
tion B, does not have a big impact on the overall compres-
sion ratio.

Moreover, in many practical scenarios, the connectivity
of a 3D dataset remains constant for the life time of the

application, whereas the geometry data change constantly.
For instance, for on-line interactive computer games, it is
well justified in terms of geometry compression to distribute
the global connectivity information of a large model to all
clients ahead of time. Only the interactive geometry data
will be streamed via the Internet in MDC code to improve
the quality of network service. This method would be es-
pecially useful for the visualization of sophisticated, non-
linear interactions between the users and the model, such as
warping and morphing.

4. Mesh Partition for Multiple Descrip-
tion Coding

As justified in Section 3, in MDC compression scheme
we only split the geometry into subsets, one for each sub-
mesh, and code the connectivity of the entire mesh as
the common side information for all co-descriptions. This
global connectivity side information is later used during de-
compression to interpolate/estimate the missing vertices if
not all co-descriptions are available, as well as to combine
different co-descriptions to improve the quality of the re-
constructed model if more than one co-description is re-
ceived.

Our task of splitting the vertex set into subsets for the
co-descriptions is to decide which vertices belong to which
co-description. Intuitively, vertices included in each of the
co-descriptions should be spaced evenly in the mesh, so
that the missing vertices can be interpolated to the posi-
tions that are close to the original ones. In addition, the de-
scription of each vertex subset and the description of the
global connectivity must be tightly coupled and efficiently
encoded, in order to make use of the connectivity informa-
tion to estimate the missing vertices and to combine differ-
ent co-descriptions.

For densely sampled 3D objects, one way to divide the
vertices into subsets whose vertices are spaced evenly is to
take the graph whose nodes and edges are respectively the
vertices and edges of the 3D mesh, and construct a vertex
spanning tree T of this graph. To divide the vertices into p
subsets of roughly the same size, we can fix some degree-1
node of T as the root, defining for each node its level in the
tree (where the root has level 0), and assign each vertex at
level � to the i-th subset, where i = � mod p. In this way,
if a vertex v is missing from one co-description, at least the
near neighbors are included and can be used to estimate v.
Moreover, some efficient triangle mesh compression algo-
rithms, such as the topological surgery approach of Taubin
and Rossignac [10], already use a vertex spanning tree to
compress the connectivity information. Therefore, the con-
nectivity information can be efficiently encoded and tightly
coupled with the encoding of the vertex spanning tree. This
will serve our purpose of MDC compression, with only a



very small additional overhead.
In our MDC compression algorithm, we use the topo-

logical surgery approach [10] to encode the connectivity in-
formation. To compress the geometry information in cases
where code length is very important, we develop our own
surface-based predictor. We also deal with the missing ver-
tices, in both encoding and decoding of co-descriptions.
These techniques will be discussed in Section 5.

5. Surface-Based Predictive Coding of Geom-
etry

In accompany with connectivity coding with the topo-
logical surgery approach [10], we carry out predictive cod-
ing of the coordinates of the vertices. The prediction can be
done fast by the parallelogram rule [11], or - if extra pro-
cessing power is available - better yet by our own surface-
based predictor.

The existing prediction methods used in compression of
3D meshes are planar in nature [10, 11, 6], assuming a flat-
ness (small curvature) in local geometry. On a second re-
flection, if we want to make the code length shorter, higher
order predictors should work better than linear type of pre-
dictors. To exploit the spatial coherence of a coarse mesh
in MDC geometry compression, the predictor needs to cap-
ture the global trend of the underlying surface. To this end
we fit the six previously coded vertices that are topologi-
cally closest to the current vertex into a quadratic surface

z′ = a1x
′2 + a2y

′2 + a3x
′y′ + a4x

′ + a5y
′ + a6. (4)

Given the six closest encoded vertices, first their interpolat-
ing plane is computed and then the coordinates are trans-
formed such that the interpolated plane becomes x′y′ plane
of the new coordinate system. The coefficients ai, 1 ≤ i ≤
6, are determined from the chosen six neighboring vertices
in transformed coordinates (x′

i, y
′
i, z

′
i), 1 ≤ i ≤ 6. The

transformation tries to minimize variance in the z′ coordi-
nate for better fit as well as to remove degenerate cases,
where the neighboring vertices would not define a surface
(one z value for every (x, y) pair) in the original coordinate
system. Under the assumption that the next vertex is close
to the resulting quadratic surface, we want to select a point
(x̂′, ŷ′, ẑ′) on this surface as the prediction, and then trans-
form the point back to original coordinate system - (x̂, ŷ, ẑ).

Using the quadratic surface fitting the neighborhood
data as one constraint, two more constraints are needed to
uniquely determine the prediction point (x̂′, ŷ′, ẑ′). These
additional constraints should be selected according to some
domain knowledge about the 3D triangle mesh. Typical tri-
angulations of 3D meshes consists of roughly equilateral
and/or isosceles triangles. This observation suggests a way
of designing the predictor.

Referring to Fig. 1, let vt = (xt, yt, zt), 1 ≤ t ≤ 3, be
the three vertices of the triangle that is opposite to the ver-
tex v to be predicted. Then we can set up the two additional
constraints by assuming that v has equal distance to v1 and
v2, and that v1 has equal distance to v and v3. Namely,

(x̂ − x1)2 + (ŷ − y1)2 + (ẑ − z1)2 =
(x̂ − x2)2 + (ŷ − y2)2 + (ẑ − z2)2

(x̂ − x1)2 + (ŷ − y1)2 + (ẑ − z1)2 =
(x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2 (5)

Solving the system of three equations in (4) and (5) for
(x̂, ŷ, ẑ), we obtain a prediction of the location of the next
vertex.

v2

v3

v1

v

Figure 1. Surface-based prediction

When we encode an individual co-description, we avoid
using any missing vertices in the prediction to prevent cu-
mulative errors. When we decode, we first recover the avail-
able vertex positions (possibly from more than one co-
description), and then estimate the positions of the miss-
ing vertices from local neighbors. This can be done by us-
ing the vertex spanning tree (interpolating from both ances-
tors and descendants), or by using the parallelogram rule or
our surface-based predictor. The estimation can be viewed
as a prediction without correcting the predictive error, and
thus any prediction scheme can be used; the better the pre-
diction, the better the quality of the reconstructed model.

6. Experimental Results

In order to evaluate our MDC algorithm for both sym-
metric channels (P1 = P2) and asymmetric channels (P1 �=
P2), we ran it for both even and uneven partitions of the in-
put 3D mesh. The allocation of vertices of input mesh M
to the two sub-meshes M1 and M2 is governed by Equa-
tion (3).

Table 1 lists the results of two-description compression
in comparison with the single-description algorithms. The
table contains file sizes in bytes of four 3D triangle meshes
compressed by: (a) the single-description compression al-
gorithm of topological surgery [10] using the linear predic-
tor (based on 4 ancestors in the vertex spanning tree) and the



Figure 2. Reconstruction results of the Bunny and Triceratops models.

parallelogram rule; (b) the proposed MDC compression al-
gorithm in both co-descriptions and for both even (1:1) and
uneven (2:1) partition of the input meshes; (c) the k-d tree-
based multi-resolution compression algorithm [4];

Dataset Bunny Horse Dino Tricer.

Vertices 34834 48485 56194 2832
Triangles 69451 96966 112384 5660

Single Desc.
Connectivity 14191 15047 18464 1312
Linear pred. 76717 92626 104766 7865
Parallelogram 54690 70507 83540 7431
MDC 1:1
Co-desc. 1 38693 47304 55915 4322
Co-desc. 2 38510 47212 56071 4355
Total 77203 94516 111986 8677
MDC 2:1
Co-desc. 1 52547 64851 74370 5612
Co-desc. 2 29343 35879 41791 3179
Total 81890 100730 116161 8791
Multiresolution
Connectivity 17380 24219 31369 2278
Geometry 61327 71491 70694 6378

Table 1. Results

For multiple-description geometry compression, if we
sum up the sizes of three compressed files: connectivity, co-
description 1 and co-description 2, the total code length is
only slightly larger than the total code length of the multi-
resolution method.

Finally, we show in Figure 2 reconstructed models of
Bunny (MDC 2:1, from left: co-desc. 1, co-desc. 2, both
co-descriptions) and Triceratops (MDC 1:1, from top: co-
desc. 1, co-desc. 2, both co-descriptions). Comparing the
image quality, we can clearly see that when only one co-

description is received, no matter which one, our approach
can still reconstruct an approximate model that is very close
to the original one.
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