
Lossless Compression of Point-Based 3D Models

Dan Chen
�

Polytechnic University, NY
Yi-Jen Chiang

�
Polytechnic University, NY

Nasir Memon
�

Polytechnic University, NY

1. Introduction

With the increasing sizes and complexity of the 3D mod-
els, it is an emerging demand to develop graphics com-
pression techniques in order to efficiently store, transmit,
and visualize such data in networked environments. Al-
though there has been a very rich literature in graphics
compression, most techniques developed so far have fo-
cused on compressing polygonal meshes, where even the
state-of-the-art geometry coders for compressing the ver-
tex information [3,6,7,10] require the use of the connec-
tivity information and thus are not applicable to point-set
compression. Among the relatively few results on point-
set compression, the technique of [11] mainly focuses on
multiresolution (rather than single-resolution) compres-
sion, and those of [4, 8] require resampling which alters
the datasets and may not be allowed in some applications.
Clearly, point-set compression is still in its early stage.

In this paper, we present a single-resolution technique
for lossless compression of point-based 3D models. An
initial quantization step is not needed and we can achieve
a truly lossless compression. The scheme can com-
press geometry information as well as attributes associ-
ated with the points. We employ a three-stage pipeline
that uses several ideas including k-d-tree-like partition-
ing, minimum-spanning-tree modeling, and a two-layer
modified Huffman coding technique based on an optimal
alphabet partitioning approach using a greedy heuristic.
We show that the proposed technique achieves excellent
lossless compression results.

2. Our Approach

A widely used technique for point-set compression is dif-
ferential coding, i.e., the differences between adjacent
vertices are encoded. Our main idea is to re-order the
vertices so as to minimize the total bits needed to encode
the overall differences. In addition, we can compute a
difference with respect to not just an immediate prede-
cessor, but to any previously visited vertex. This opens
up new avenues for optimization of vertex re-ordering.
�
dchen@cis.poly.edu. Supported by NSF CCF-0118915.�
yjc@poly.edu. Supported in part by NSF CCF-0118915, NFS CA-

REER CCF-0093373, and NFS ITR CCF-0081964.�
memon@poly.edu. Supported in part by NSF CCF-0118915.

Moreover, we need an efficient coding technique to en-
code the differences. We discuss these in more details.

2.1. Vertex Re-ordering

We observe that representing a set of points using a min-
imal set of pairwise differences essentially involves com-
puting a spanning tree of the complete graph defined by
the points. Specifically, we form a complete weighted
graph � where the nodes are the vertices �	��

���
��
����
of the point cloud and the weight on each edge is the
coordinate-wise 3-tuple of differences. That is, if �������� ��
�����
����! and �#"$� ��� "�
%��"�
��
"� then the edge

� ����
%��"�
has weight

�&� �(' � "�
%���)'*�#"�
��#�+',�-"� . The tuples of ���
and �#" are extended similarly when attribute values are
included, with the weight defined analogously.

Definition 1 Given a spanning tree . of a weighted
graph � , let / � be the number of times a distinct edge
weight 01� appears in the edge weights of . , and 23���
/��5476 � /�� . Then the zero-order entropy of the weights on
the edges of . is defined by 8:9 � .;
��< 7�=' 6 � 2)��>@?�AB2)� .

Over all possible spanning trees of � , there exists a
tree . that minimizes the entropy 8:9 � .;
��< :
Definition 2 Given a weighted graph � , we define a
minimum entropy prediction tree (ME tree) to be a span-

ning tree . such that 8:9 � .;
��< DCE8F9 � .HGI
��< for all
spanning trees .KJ of � .

Now the problem is: how do we compute an ME tree
of � ? We can prove that this problem is NP-Hard, by
reducing the problem of finding an exact three cover by
3-sets (X3C problem, known to be NP-Complete [5]) to
our ME-tree problem. We do not provide a proof here for
a lack of space, but will do so in the full paper.

Since the ME-tree problem is NP-Hard, we next look
at special conditions where it may admit a tractable so-
lution. To do this we first define the Minimum Abso-
lute Weight (MAW) tree to be a spanning tree that min-
imizes the sum of the absolute value of the weights on
its edges. If we assume that smaller weights occur with
higher frequency then we can show that the ME tree is
indeed an MAW tree. Again, we skip the proof and
defer that to the full paper. Since an MAW tree can

be computed efficiently using the well-known Kruskal’s
or Prim’s minimum-spanning-tree (MST) algorithm, we
now have an efficient way to compute a desired spanning
tree . . Note, however, that . will not be known to the
decoder and must be efficiently encoded and sent as side
information. We describe how to do this next.

2.2. Encoding the Minimum Spanning Tree

Now we describe our technique for encoding the com-
puted minimum spanning tree . . We remark that the pre-
vious run-length coding approach in [9] may not work
well since there might be many runs in our more general
setting, and thus a new tree-encoding method is needed.

Our technique is simple and general; it is based on a
breadth-first-search (BFS) traversal of . . We first pick
an arbitrary node � of . as the root, and then start a BFS
traversal at � . At the beginning, we put down the original
data of � , and the number ��� of child nodes of � , followed
by ��� differences, each a child �
� of � represented by the
difference �
�)'�� . We then traverse all children of � one
by one as enumerated, and then all grand-children, and
so on, using the same process. Notice that if node � is
a leaf, we still put down ��� � �

, with no difference fol-
lowing ��� . All the differences will be further encoded by
our additional coding approach described in Section 2.3.
For the numbers � � , we simply use a fixed-length coding.
This means that in addition to the cost of our differential
coding for the data, the overhead of encoding the tree is
>@?�A
	 ����
�� � � � bits per vertex, where � � is the number of
children of node � in . . In all our experiments the max-
imum number of children is 4, and hence this overhead
is only 2 bits per vertex. The decompression process fol-
lows the compression scheme; we additionally maintain
a pointer to the next vertex � whose children are yet to be
generated, so that the correct offset can be added to the
differences to recover the children of � . Clearly, each
encoding/decoding of the tree takes optimal linear time.

2.3. The Overall Algorithm

Our overall algorithm consists of the following steps.
Step 1. Integer Mapping We map the coordinates and
attribute of the vertices to integers by an invertible opera-
tion. Specifically, we can take a 32-bit floating-point rep-
resentation and simply treat it as a 32-bit integer, which
clearly can be mapped back to the original floating point.
Step 2. Vertex Partitioning We partition the vertices
into ��� clusters for a given parameter � using a k-d-tree-
like scheme as follows. We sort the vertices by

�
-values

and split them equally into � groups; for each group we
repeat the process by � -values, and finally we repeat the
process again by � -values. The resulting ��� groups are

the ��� clusters. The purpose of this step is to speed up
Step 3 (and keep compression efficiency) by a suitable � .
Step 3. Vertex Re-ordering For each cluster, we re-order
the vertices using the MST approach in Sections 2.1–2.2
to minimize the entropy of the vertex differences.
Step 4. Entropy Coding Typically the vertex differences
have a very high dynamic range (i.e., they have a large
alphabet size), and cannot be efficiently encoded in a
straightforward way. In our recent work [2] we resolved
this issue by developing a two-layer modified Huffman
coding technique that minimizes the total cost of encod-
ing the data as well as the data-specific Huffman table
using an optimal alphabet partitioning method based on a
greedy heuristic. Here, we pool the differences across all
coordinates and all clusters, and construct a single modi-
fied Huffman code using the greedy method of [2]. This
results in a single Huffman table for each dataset and
hence the Huffman-table cost is further reduced.

3. Experimental Results

In our experiments we used point-cloud datasets obtained
by taking triangle meshes and removing their connec-
tivity information. This gave us an additional freedom
to compare our algorithm with state-of-the-art geometry
compression technique [10] for triangle meshes (which
utilizes the connectivity information to help obtaining ef-
ficient compression) and use this as a bound on the per-
formance of our technique.

We used a total of thirteen models, available at
http://cis.poly.edu/˜dchen/research.html,
as shown in Table 1. Each vertex coordinate is given
as a 32-bit float (thus 96 bits per vertex). In all our
experiments we partitioned the vertices into ��� clusters
for some integer � so that there were 100-200 vertices per
cluster. This gave a fast and yet competitive compression
among choices of � .

Lossless Compression Results obtained with our MST-
based lossless compression are shown in Table 1. For the
sake of comparison we also present results obtained with
Gzip, a commonly used lossless compression technique,
and another method based on TSP re-ordering which was
originally proposed for tetrahedral meshes in our previ-
ous work [1] but can be easily adapted for point clouds.
On examining the results we see that our MST approach
gave the best compression performance. In particular it
gave more than 17.8% improvement over Gzip on an av-
erage. We note that the entropy coding technique used for
the MST and TSP methods was the alphabet partitioning
technique described in Section 2.3, where only one Huff-
man table was constructed for each dataset.

Comparison with Flipping To gauge the efficacy of
our compression algorithm, we compare our method

Dataset MST TSP Gzip MST TSP
bpv bpv bpv Time Time

armadilo 42.93 45.29 55.24 265 517
blade 30.97 31.24 41.88 3409 4245
bunny 70.71 70.46 87.64 53 71
dragon 60.26 63.09 66.04 73 170

drill 40.74 44.65 50.26 5 11
hand 39.80 40.00 45.43 822 1082
budda 45.53 46.87 57.09 1381 1558
horse 63.00 65.78 81.05 62 74
phone 65.91 65.89 86.31 135 155
rabbit 55.63 59.06 63.85 132 157
sdriver 59.11 63.69 70.25 56 66
teeth 54.15 56.89 60.93 185 220
venus 53.23 57.26 64.41 252 321

Table 1. Results for lossless compression (with no quan-
tization) in bits per vertex (bpv) for three techniques in-
cluding all overheads. Compression times are in seconds.

for point-cloud compression with the well-known and
widely-cited flipping method [10] that utilizes the con-
nectivity information (albeit such information is not
available for point clouds). Since the flipping method
reported in the literature performs quantization prior to
compression, we quantized each coordinate to a 16-, 24-,
and 32-bit integer and used them for comparison. We im-
plemented the flipping prediction method based on [10]
and encoded the prediction errors by a simple strategy of
Huffman coding. The results are shown in Table 2. Our
results show that as the quantization increased from 32 to
16 bits, the efficiency of the flipping method was gradu-
ally increasing. Compared to flipping, our MST method
performed 22.82% better on an average when quantized
to 32 bits. But when quantization increased to 24 bits,
the improvement was down to only 7%. When we quan-
tized to 16 bits, the MST method actually did worse by
16% on an average. This shows that when the quanti-
zation precision is decreased, flipping is able to predict
more accurately. We conclude that flipping is more suit-
able for lossy compression (after quantization) whereas
for lossless compression our technique is more suitable.

It is to our surprise that our method performed better
than flipping for higher-precision quantization compres-
sion. One may say that this is due to the superior en-
tropy coding technique used in our algorithm. However,
when we compared just the entropy of the prediction er-
rors (taken a byte at a time), our approach still gave better
performance. This does not mean that connectivity infor-
mation is of no use; it just means that we still need to de-
velop better prediction techniques that are able to better

Name 32bit quant 24bit quant 16bit quant
MST Flip MST Flip MST Flip

armadilo 44.7 67.2 38.4 45.3 22.4 24.4
bunny 75.2 74.6 54.9 51.4 27.6 20.7

dragon 60.0 71.6 55.1 57.1 33.8 28.6
drill 38.7 59.5 35.7 40.6 17.8 17.5

hand 38.9 73.7 35.1 50.6 21.9 24.7
budda 43.5 69.7 38.7 52.8 23.1 24.6
horse 60.6 71.9 55.7 54.3 33.8 26.0

phone 68.9 72.9 60.1 53.3 32.7 22.7
rabbit 57.4 70.3 53.5 54.2 33.8 26.5

sdriver 54.5 69.4 51.9 55.0 30.8 26.7
teeth 50.9 70.3 47.6 53.6 31.7 26.2

venus 56.0 67.1 51.1 51.6 32.5 24.5

Table 2. Compression results in bits per vertex (bpv) after
quantization of original data.

use this connectivity information in lossless compression.

References

[1] D. Chen, Y.-J. Chiang, N. Memon, and X. Wu. Lossless geome-
try compression for steady-state and time-varying irregular grids.
Submitted for publication, 2005.

[2] D. Chen, Y.-J. Chiang, N. Memon, and X. Wu. Optimal alphabet
partitioning for semi-adaptive coding of sources with unknown
sparse distributions. In Proc. Data Compression, pages 372–
381, 2003.

[3] D. Chen, Y.-J. Chiang, N. Memon, and X. Wu. Optimized pre-
diction for geometry compression of triangle meshes. In Proc.
Data Compression, pages 83–92, 2005.

[4] S. Fleishman, D. Cohen-Or, M. Alexa, and C.T. Silva. Pro-
gressive point set surfaces. ACM Trans. Computer Graphics,
22(4):997–1011, 2003.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. pages 208–209. W. H.
Freeman, New York, NY, 1979.

[6] M. Isenburg and P. Alliez. Compressing polygon mesh geometry
with parallelogram prediction. In Proc. Visualization, pages 141–
146, 2002.

[7] B. Kronrod and C. Gotsman. Optimized compression for triangle
mesh geometry using prediction trees. In Proc. 3D Data Pro-
cessing, Visualization and Transmission, pages 602–608, 2002.

[8] T. Ochotta and D. Saupe. Compression of point-based 3D models
by shape-adaptive wavelet coding of multi-height fields. In Proc.
Point-Based Graphics, 2004.

[9] G. Taubin and J. Rossignac. Geometric compression through
topological surgery. ACM Trans. Graphics, 17(2):84–115, 1998.

[10] C. Touma and C. Gotsman. Triangle mesh compression. In
Proc. Graphics Interface, pages 26–34, 1998.

[11] M. Waschbusch, M. Gross, F. Eberhard, E. Lamboray, and
S. Wurmlin. Progressive compression of point-sampled models.
In Proc. Point-Based Graphics, pages 95–102, 2004.

