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Abstract

We propose a novel out-of-core simplification and level-of-detail (LOD) volume rendering algorithm for large

irregular grids represented as tetrahedral meshes. One important feature of our algorithm is that it creates a

space decomposition as required by I/O-efficient simplification and volume rendering, and simplifies both the

internal and boundary portions of the sub-volumes progressively by edge collapses using the (extended) quadric

error metric, while ensuring any selected LOD mesh to be crack-free (i.e., any neighboring sub-volumes in the

LOD have consistent boundaries, and all the cells in the LOD do not have negative volumes), with all computations

performed I/O-efficiently. This has been an elusive goal for out-of-core progressive meshes and LOD visualization,

and our novel solution achieves this goal with a theoretical guarantee to be crack-free for tetrahedral meshes.

As for selecting a desirable LOD mesh for volume rendering, our technique supports selective refinement LODs

(where different places can have different error bounds), in addition to the basic uniform LODs (where the error

bound is the same in all places). The proposed scalar-value range and view-dependent selection queries for se-

lective refinement are especially effective in producing images of the highest quality with a much faster rendering

speed. The experiments demonstrate the efficacy of our new technique.

1 Introduction

The rapid growth of the data size in recent years has posed

a big challenge to scientific visualization. In this paper, we

intend to attack this challenge by proposing a novel out-of-

core simplification and level-of-detail (LOD) volume ren-

dering algorithm. We focus on the class of irregular grids

represented as tetrahedral meshes, which is the most general

class of volumetric data and arises in applications such as

computational fluid dynamics, shock physics, and so on.

In order to perform LOD rendering out-of-core, it is nec-

essary to store the multiresolution representation in blocks.

To facilitate I/O-efficient simplification and volume render-

ing, these blocks need to correspond to the sub-volumes ob-

tained by some space partition of the volume. Commonly

used such structures include octrees, kd-trees, and so on.

† zdu@cis.poly.edu; research supported by NSF grant CCF-

0541255.
‡ yjc@poly.edu; research supported in part by NSF CAREER

Grant CCF-0093373 and NSF Grant CCF-0541255.

However, the neighboring sub-volumes in the desired LOD

may lie at different levels in the tree, causing the boundary

consistency problem. Technically, it is desirable to avoid this

problem and achieve a crack-free LOD mesh, namely, any

neighboring sub-volumes in a selected LOD have consistent

boundaries, and all the cells in the LOD are fold-over free

(i.e., do not have negative volumes). A simple solution (as

in [SS06b]) would be not to simplify the boundary cells un-

til at a higher level where these cells become interior to an

ancestor sub-volume. But for those cells that are initially cut

at the top level, they cannot be simplified until at the tree root

(i.e., at the very end of simplification), which is undesirable.

It turns out that this issue of crack-free LOD in the out-of-

core setting for general meshes is technically quite challeng-

ing; previously there were only a few techniques addressing

this issue ( [CGG∗04, YSGM04, CGG∗05, SM05] for trian-

gle meshes and [SS06a] for tetrahedral meshes). However,

it is not guaranteed that the boundary cells can always be

simplified; even when they can, typically they have to be

simplified in future levels rather than at every current level;

and sub-volumes of disparate errors could be merged and

simplified, resulting in less-smooth simplifications (see Sec-
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tion 2). Therefore out-of-core crack-free LOD has been an

elusive goal, especially for tetrahedral meshes that are usu-

ally highly irregular.

Our algorithm has an important feature that it achieves

this goal mentioned above. Specifically, it creates a space de-

composition as required by I/O-efficient simplification and

volume rendering, and guarantees that both the internal and

boundary portions of the sub-volumes can be simplified at

every current level, with any selected LOD mesh guaranteed

to be crack-free. Moreover, we use error-based merging to

merge and simplify sub-volumes of similar errors for higher

quality, where our simplification is progressive by edge col-

lapses using the (extended) quadric error metric [GZ05].

With these properties, our technique tries to fill in the gap

in the literature and complement the previous approaches.

As for selecting a desirable LOD mesh for volume render-

ing, our technique supports selective refinement [CFM∗04]

that allows an LOD to have varying error bounds over dif-

ferent places, in addition to the basic uniform LOD (the

same error bound over all places). We give a flexible scheme

for selective refinement queries. In particular, the proposed

scalar-value range and view-dependent selection queries can

be guided by a quick low-LOD image (to find the colors of

important features together with the color mapping in the

transfer function, and/or to find the desirable viewing pa-

rameters), and are especially effective in producing images

of the highest quality with a much faster rendering speed.

Our LOD-mesh approach is independent of the final vol-

ume rendering method, and hence any tetrahedral volume

rendering engine can be used as the volume renderer. In this

paper we use the HAVS code [CICS05], which is a state-of-

the-art tetrahedral-mesh volume rendering technique using

programmable GPU. We modify it to make it run out-of-

core, which we call out-of-core HAVS.

The experiments demonstrate the efficacy of our new

technique. In particular, for full-resolution volume render-

ing on datasets much larger than main memory, we can

improve the running time over out-of-core HAVS (without

LOD) from 19.71 minutes to 3.82 minutes using selective-

refinement LOD with almost the same image quality.

2 Previous Work

Recently a huge amount of work has focused on irregular-

grid volume rendering using programmable GPU. As a com-

prehensive review of them is not our focus, we refer to the

excellent survey [SCCB05] and the review in [MHDH07].

As mentioned, we use the HAVS method [CICS05], which

we review in Section 3.3.

While GPU-based techniques can achieve interactive ren-

dering for moderate-size datasets, LOD or multiresolution

approaches [LRC∗02] are important for large datasets. How-

ever, there are relatively few results in this area for tetra-

hedral meshes. A related topic, tetrahedral-mesh simplifi-

cation, was developed in [THJW98, SG98, THJ99, CM02].

Other techniques with topology considerations were given

in [CL03] and the references therein. These algorithms do

not support LOD volume visualization. In [CFM∗04], a mul-

tiresolution representation for tetrahedral meshes is built to

support selective refinement queries for visualization. The

work [CCSS05] introduced a sample-based simplification

for LOD volume rendering; the simplification is done by

sampling the mesh triangle faces with the connectivity re-

moved.

The techniques mentioned so far are all in-core algo-

rithms. For out-of-core approaches, early results [FS01,

CFSW01] gave out-of-core volume rendering techniques for

tetrahedral meshes without supporting LOD or using GPU.

Recently, a streaming technique was given in [VCL∗07]

to simplify tetrahedral meshes, without producing a mul-

tiresolution representation or supporting LOD rendering.

A streaming compression method was given in [ILGS06].

Various clustering approaches for out-of-core tetrahedral

meshes was discussed in [DDPS05]. A progressive vol-

ume rendering algorithm [CBPS06] was proposed for the

client-server model, where the client has limited main mem-

ory but the preprocessing and the major run-time compu-

tations need to be performed in-core on the server; only

a single resolution is kept for the data. The iRun ap-

proach [VCS∗07] is an out-of-core extension of the sample-

based LOD method [CCSS05], where no connectivity or

mesh LOD is maintained. As mentioned in Section 1,

[SS06b] performs out-of-core simplification and LOD vol-

ume rendering for tetrahedral meshes, but it uses the simple

approach of not simplifying the sub-volume boundaries at

all. The only such approach that addresses the issue of crack-

free LOD is [SS06a], which is based on [CGG∗05] and we

discuss them together below.

There has been an extensive work on out-of-core, LOD

view-dependent rendering on polygonal models; we refer

to [YL06, CRMS03] and their references. As mentioned

in Section 1, among the space-decomposition methods only

those in [CGG∗04, YSGM04, CGG∗05, SM05] address the

issue of crack-free LOD for general 3D triangle meshes. In

Quick VDR [YSGM04], the boundary between neighboring

nodes are allowed to be simplified and a dependency be-

tween these two nodes is created if there is no other “rip-

pling” new dependency created. However, there is no sys-

tematic way on how to stop the rippling. In Progressive

Buffers [SM05], clusters are simplified one by one in an ar-

bitrary order with all neighboring clusters entirely loaded to

main memory. The current cluster can simplify its bound-

ary together with the sharing neighbor, whose interior stays

fixed. However, two or more clusters can impact the bound-

ary of the same neighbor at different times, making the sim-

plification non-trivial—LOD mesh must follow the same se-

quence of simplifications to obtain consistent boundaries.

But this issue is not discussed. Also, for highly irregular vol-

ume meshes the cluster complexity can vary greatly; loading
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partition n−1
partition n−2
partition n−3
partition n−4

partition n

Figure 1: An example of the scheme in [CGG∗05, SS06a]

where the triangle cannot be simplified at all levels shown.

neighbors entirely could be inefficient and memory expen-

sive.

The Batched Multi Triangulation [CGG∗05] (whose

basis is the in-core directed acyclic graphs (DAG)

method [DM02]) improves upon TetraPuzzles [CGG∗04],

and the same idea is used in the Segment-Based Tetrahedral

Meshing [SS06a]. Intuitively, the scheme uses a sequence of

coarser (and rotating) space partitions, where at each level of

simplification two consecutive partitions are super-imposed

to each other to form the active partition (Fig. 1). Only the

triangles/cells lying entirely within a region of the active par-

tition can be simplified. With the restriction that the neigh-

boring nodes in LOD have level difference no larger than

one, the scheme achieves crack-free LOD. With an “ideal”

partition sequence the cells crossing the region boundary can

be simplified at a few levels up (2 levels at best). However, it

cannot be guaranteed that boundary cells can always be sim-

plified (see Fig. 1: the triangle stays for many levels). More-

over, two sub-meshes of disparate errors could be merged

and simplified since the merging is based on a pre-decided

space partition rather than on errors of sub-meshes, resulting

in less-smooth simplifications. In contrast, our new tech-

nique resolves these issues along different directions.

3 Our Approach

3.1 Overview

LODCuts and Error-BasedMerging Our key design prin-

ciple is to exploit the structure of the error-based LOD cuts

to achieve crack-free LODs. In the preprocessing phase, we

build a tree, called merge tree M, by first partitioning the in-

put mesh spatially into sub-volumes (corresponding to tree

leaves) with roughly the same number of vertices, and then

simplifying and merging these (leaf) sub-volumes bottom-

up using an edge-collapse method. During the entire process

of tree construction, the boundary among neighboring sub-

volumes at each step is kept consistent. Because we simplify

one tree node (sub-volume) at a time, we achieve bound-

ary consistency by propagating the boundary edge collapses

of the current sub-volume to its neighboring sub-volumes.

Each time we create a new tree node by merging some sub-

volumes and simplifying it, a new, corresponding boundary

version (i.e., the boundary status resulting from the simplifi-

cation) is also created. In this way, if we create n new nodes,

counting the original version we have n+ 1 boundary ver-

sions. As we will see later, if we create the new nodes in

the order of increasing errors, then for all possible query

error bounds ε, there are only n+ 1 possible LOD cuts (a

breadth cut on tree M) satisfying ε, corresponding to those

n + 1 boundary versions. On the other hand, in order to

achieve smooth, continuous LOD meshes (it is important

to reduce the cell/triangle-face count in volume rendering

since we need visibility sorting), we also further simplify

each sub-volume’s interior separately and keep a progressive

representation (see below). Therefore, to get both consistent

boundary and continuous LODs, we have two phases of sim-

plification for each tree node (sub-volume): (1) simplifying

globally including the interior and boundary, in the order of

increasing errors, to get a new boundary version and a sim-

plification error lower bound εl ; (2) simplifying the interior

further in the same order, to get a simplification error upper

bound εu. The resulting sub-volume is called the base mesh

of this tree node. Each node is bounded in error range [εl ,

εu], meaning that it can be continuously simplified/refined

within this error range using progressive representation.

The tree M is just a tree skeleton, storing only the mini-

mum amount of information needed in each node (e.g., [εl ,
εu], the [min,max] scalar values and the axis-aligned bound-

ing box of its sub-volume); the actual sub-volume meshes

are stored separately on disk. Therefore each node is quite

small and we assume that the tree M can entirely fit in main

memory. In fact we first define a suitable number of ver-

tices in each initial sub-volume (e.g., 20K), which decides

the number L of leaf sub-volumes in M and thus the size of

M, so that M can entirely fit in main memory (M is at most

82.5KB in all our experiments).

In the run-time phase, we first decide the desired LOD cut

on tree M satisfying query error ε. Once the cut is chosen, the

boundary version is chosen too. As mentioned above, this

boundary version is one of the n+ 1 versions constructed

during preprocessing and is crack-free. Within each cut, we

can have continuous versions of LODs by independently and

progressively refining each node in the cut. This can be used

to support selective refinement LODs.

Progressive Boundary and Interior with Fire Wall It is

easy to see that a tree node (sub-volume) can have neigh-

bors at many different tree levels, therefore it needs many

boundary versions to be consistent with the neighbors. We

achieve this by using a progressive representation, i.e., for

each tree node we store the base mesh, and keep a linear se-

quence of edge collapses propagated from neighbors (which

will be in the order of increasing errors in a nice way; see

later), so that we can follow the sequence linearly to sim-

plify the (boundary of the) base mesh. Also, as mentioned,

to support continuous LODs we want to refine the interior

of the nodes in the LOD cut continuously. Again we use a

progressive representation, keeping a linear sequence of ver-

tex splits (the inverse of edge collapses due to the internal
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U U

(a) (b) (c)

U

V V V

Figure 2: The firewall. For sub-volume V , the outer-

boundary is shown in green and the firewall is shown in red.

(a) After the global simplification on V; the firewall is iden-

tified at this point. (b) After the internal simplification on V ,

i.e., the base mesh of V . (c) After the global simplification

of neighbor sub-volume U. The boundary edge collapses of

U are propagated to V to simplify the outer-boundary of V .

Note that the firewall is intact.

simplification in phase (2), in totally sorted order) to refine

the interior.

This scheme requires the ability to simplify/refine the

boundary and interior independently. The idea is to keep the

border between them intact during simplification/refinement

so that it acts as a firewall to protect both portions. In a

sub-volume V , a vertex shared by other sub-volume(s) or a

vertex on the boundary of the input mesh is called an outer-

boundary vertex; the remaining vertices of V that are con-

nected to the outer-boundary vertices are called the firewall

vertices (Fig. 2). The edges shared between sub-volumes

(i.e., connecting shared vertices) are the boundary edges that

will need to be propagated to neighbors if collapsed. The

cells connecting between the outer-boundary and the fire-

wall form the boundary portion ofV , and the remaining cells

form the internal portion/interior of V .

We stress that we first perform a global simplification on

V , which is not restricted by the firewall and can already sim-

plifyV as desired. Then we identify the firewall and perform

the internal simplification. Therefore the firewall does not

prevent us from performing a desired smooth simplification.

Referring to Fig. 2, where we first simplify V and then U .

In (a), the global simplification on V has been done (which

also propagated boundary edge collapses to U to make the

boundary consistent). (When globally simplifying V , for an

edge (a,b) where only a is on the outer-boundary, we only

allow collapsing b to a so that it will not create a new ver-

tex in any neighbor sub-volume.) We then identify the fire-

wall and perform internal simplification on V (see (b)). Dur-

ing internal simplification, for a candidate edge e, if there

is one endpoint on the firewall, then we collapse the other

endpoint toward the firewall endpoint so that the firewall is

intact; if both endpoints are on the firewall then we do not

collapse e. In (c), after the global simplification of U , its

(outer-)boundary is also simplified, and the boundary edge

collapses are propagated to V to make the boundary consis-

tent. Note that these boundary edges only affect the outer-

boundary of V (see (c)) and again the firewall is intact.

We keep a separate boundary portion so that when we

need the boundary information from neighbors we can avoid

loading the whole neighbor and be I/O-efficient.

3.2 Preprocessing Phase: Out-of-Core Simplification

There are two major tasks in our preprocessing algorithm:

(1) mesh partition, and (2) error-based sub-volume merging.

3.2.1 Task 1: Mesh Partition

Initially, we use the meta-cell technique [CSS98] to parti-

tion the input mesh into L sub-volumes of roughly the same

size, each consisting of spatially neighboring cells. These

sub-volumes will correspond to the L leaves of the merge

tree M. Every cell is uniquely assigned to one single sub-

volume; vertices shared by two or more sub-volumes are

duplicated into each sub-volume. Such sub-volumes are de-

fined as neighbors. We keep the global vertex ID for each

shared vertex so that they can be identified from neighbors.

We also build a connectivity graph G, where the nodes of

G are the sub-volumes and the edges of G connect neigh-

bors. If two sub-volumes are merged during simplification

we merge the corresponding nodes with their edge in G col-

lapsed (see Fig. 3). In this way we maintain the neighboring

information among the existing sub-volumes.

3.2.2 Task 2: Error-Based Sub-volume Merging

In this step, we repeatedly simplify and merge sub-volumes

bottom-up to build the merge tree M. We perform half-edge

collapses using the (extended) quadric error metric [GZ05].

Recall from Section 3.1 that for each node of M we have

an error range [εl ,εu] where εl is the error after the global

simplification and εu is the error after the additional internal

simplification; clearly εl ≤ εu. At the leaf level, we set εl = 0

and only perform the internal simplification (until no more

than c vertices remaining for a parameter c (e.g., 1.5K)) and

set up εu. To continue, we put all current nodes to a priority

queue Q with εu as the key, and repeatedly extract minimum

from Q. The first extracted node is put to a place holder P.

In general, for the current extracted node w, we look at P

to see if there are any neighbors of w. If not, we put w to P

and repeat; otherwise we take out all neighbors of w from P

and merge them all together with w to form a new tree node

x, which becomes the parent of the merged nodes (e.g., in

Fig. 3(b) node 2 is merged with node 1 from P to form node

6). Note that w has the largest εu value among its siblings;

we set εl(x) = εu(w), since some part (w) of the merged sub-

volume already has errors up to this value (e.g., in Fig. 3(b)

node 6 has εl = 2). We then apply the global simplification

on the merged sub-volume up to error bound εl(x) (which

also propagates the collapsed boundary edges to the affected

neighbors). Finally we fix the firewall and perform the inter-

nal simplification until no more than c vertices remain and

set up εu(x). At this point, the creating of new node x is com-

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



Z. Du & Y.-J. Chiang / Out-of-Core Simplification and Crack-Free LOD Volume Rendering

Construction Forest         Connectivity Graph G

(b)

(a)

(c)

(d)

(e)

[0,1] [0,2] [0,4] [0,5] [0,6]

[0,1] [0,2] [0,4] [0,5] [0,6]

[0,1] [0,2] [0,4] [0,5] [0,6]

[0,1] [0,2] [0,4] [0,5] [0,6]

[0,1] [0,2] [0,4] [0,5] [0,6]

[2, 3]

[0,2)

[4,6)

[2,3]

[4,7]

[6,8]

[4,7]

[2,3]

[8,10]

[2,3] [6,8]

[4,7]

[6,8)

[2,4)

[8,infinity)

6

3

5
41 2 3 4 5

6

4
1 2 3 4 5

5

3

21

6

1 2 3 4 5 4
5

77

54321

86

7

7

8

9

9

7

6 8

54321

Figure 3: An example of constructing the merge tree M.

The left column shows the construction forest of each stage.

Each tree node is associated with an error range [εl ,εu].
Note that the new nodes are created in the order of increas-

ing εl . From (e), if we query ε against the εl values, as

we sweep ε from 0 to ∞, we see that there are five dis-

tinct LOD cuts with their ε values falling in five intervals

[0,2), [2,4), [4,6), [6,8), [8,∞). These LODs are exactly the
cuts (shown in green lines, together with their ε-value ranges

in green) formed by the root nodes of the construction forests

in stages (a)–(e). The right column shows the corresponding

connectivity graphs.

plete; we put x (with key εu(x)) to the priority queue Q and

repeat the process. Note that since εl(x) of the new node x

is always the latest εu value extracted from Q, we create the

new tree nodes in the order of increasing εl (see Fig. 3(b)-

(e): nodes 6, 7, 8, 9 are created with εl = 2,4,6,8).

Right after the internal simplification on x, we obtain the

base mesh of x and the refinement sequence of vertex splits

for refining the interior of the base mesh. Another sequence,

the simplification sequence of edge collapses for the bound-

ary, is currently empty and will be grown when other neigh-

bors perform their own global simplification and propagate

the affecting edge collapses here. We also maintain an addi-

tional, auxiliary up-to-date version of the boundary. This is

used to provide the boundary information to neighbors that

need such data for fold-over checking or other operations.

Properties of the LOD Cuts Referring to Fig. 3, we see

that during construction the structure of M starts as a forest,

called construction forest, which gradually grows into a tree.

The “working set” of the nodes are the roots of the forest at

each stage, where these roots form a breadth cut on tree M.

We create a new node at each stage, which has the largest εl

among the cut nodes. Since we create these new nodes in the

order of increasing εl , these εl values form a sorted sequence

2, 4, 6, 8, partitioning the entire error value range [0,∞) into

five intervals [0,2), [2,4), [4,6), [6,8), [8,∞). From the com-

plete tree M in Fig. 3(e), if we query ε against the εl values

(i.e., for the highest LOD cut satisfying εl ≤ ε), then as we

sweep ε from 0 to ∞, we see that there are five distinct LOD

cuts with their ε values falling in these five intervals; they are

exactly the cuts formed by the root nodes of the construction

forests in stages (a)–(e). Since at each construction stage we

make sure that the cut nodes have consistent boundaries and

all possible query LOD cuts were enumerated during con-

struction, any queried LOD cuts are boundary consistent.

Growing the Simplification Sequence Recall that the sim-

plification sequence is grown “passively” by receiving the

boundary-edge collapses propagated from affecting neigh-

bors. When such a neighbor ω1 performs the global simpli-

fication up to error εl(ω1), all the edge-collapses propagated

from ω1 are ordered sequentially with increasing errors up

to εl(ω1). We can just accumulate this sequence S1 with

mark εl(ω1). Next, the edge-collapses propagated from an-

other neighbor ω2 have the same property, with sequence S2

and marked with εl(ω2). Recall that we create/simplify tree

nodes in the order of increasing εl , meaning that εl(ω1) ≤
εl(ω2) ≤ ·· ·, and we can just concatenate S1,S2, · · · sequen-

tially. In the future, to reconstruct the boundary version con-

sistent with ωi, we just follow the simplification sequence

linearly to simplify the boundary up to error εl(ωi) (i.e., to

the end of Si), which is very easy.

In Appendix A (in the supplementary materials) we dis-

cuss how to support the (extended) quadric error met-

ric [GZ05].

3.3 Run-Time Phase: Out-of-Core LOD Volume Ren-

dering

In the run-time phase, we first load the merge tree M to main

memory. Given a user-specified query and the rendering pa-

rameters, we perform the following tasks.

(1) Use the tree M and its sub-volumes to find the desired

LOD mesh.

(2) Perform volume rendering on the selected LOD mesh.

3.3.1 Task 1: Selecting the Desired Crack-Free LOD

Mesh

We support two types of LODs: the uniform LODs and the

variable LODs for selective refinement.

Uniform LODs

We first consider the uniform LOD mesh: Given a user-

specified error bound ε, we want to find the crack-free LOD
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mesh satisfying ε. This is the basis of our algorithm, and will

be extended later to support variable LOD meshes.

We first find the LOD cut nodes in M satisfying ε based

solely on εl : starting from the root, we perform a breadth-

first search to find the highest breadth cut (i.e., closest to the

root) on M such that each node in the cut has εl ≤ ε.

Secondly, for each node in the cut, we read the corre-

sponding sub-volume V one at a time from disk to main

memory; this includes the base mesh, the refinement se-

quence, and the simplification sequence. For each V , we do

the following.

At the beginning, we use the refinement sequence to refine

the interior of the base mesh to satisfy ε: if εu ≤ ε, then the

base mesh already satisfies ε. Otherwise we sequentially re-

fine the base mesh following the refinement sequence, which

monotonically decreases the mesh error, until the mesh error

is no larger than ε. LetV ′ be the resulting mesh; note thatV ′

has the same boundary as the base mesh.

Our next task is to use the simplification sequence to sim-

plify the boundary of V ′ so that the LOD cut on tree M

is crack-free. Recall from Section 3.2 that the final simpli-

fication sequence is a concatenation of marked sequences

S1,S2, · · ·, where each marked sequence Si has simplifi-

cation errors no more than εl(ωi). In addition, we have

εl(ω1) ≤ εl(ω2) ≤ ·· ·. The operation here is simple: we ap-

ply these marked sequences S1,S2, · · · sequentially to sim-

plify V ′, each time using up the entire marked sequence, un-

til finally we encounter some Si whose mark is εl(ωi) > ε.

This means that ωi is not in the LOD cut and we should stop

there. LetV ′′ be the resulting mesh; we callV ′′ the resulting

sub-volume (obtained from the sub-volume V ).

Lemma: The selected LOD mesh formed by the resulting

sub-volumes V ′′ is crack-free.

Proof: See Appendix B (in the supplementary materials).

Variable LODs for Selective Refinement

Now we consider the selective refinement queries based

on the query (ε,R) where the selection method R is either

R = t% (view-dependent selection) or R = [a,b] (scalar-

range query), to be explained soon. Given (ε,R), we want to

find the LOD mesh with the highest (i.e., closest to the root)

LOD cut possible in which the active sub-volumes selected

by R are in resolutions satisfying ε and other sub-volumes

are in the lowest resolutions just enough to ensure crack-

free. Our algorithm consists of the following steps.

1. Use ε to find the LOD cut on the tree M satisfying ε.

2. Among the nodes in the cut, find the nodes selected by

R. For R = [a,b], we select the nodes whose [min,max]
interval† intersects with [a,b]. For R = t%, we select the

† For each node of the merge tree M we store the [min,max] scalar

values of the most detailed version of the sub-volume (right before

the internal simplification begins, and right after the global simpli-

fication finishes if non-leaf).

closest t% nodes to the viewer, where currently we esti-

mate the “closeness” by the distance between the viewer

and the center of the axis-aligned bounding box of the

node’s sub-volume.

3. Now we want to adjust the LOD cut to the highest

possible while still going through the selected nodes

and still being a valid crack-free cut. The intention is

to reduce the number of nodes in the cut. For exam-

ple, in Fig. 3, to select node 3 we can move the cut

from the one in Fig. 3(a) up to the one in Fig. 3(b)

(but not the one in Fig. 3(c)). To do this, for each se-

lected node we look at its parent’s εl value. Take the

minimum among these εl values, and call it εnew, i.e.,

εnew = min{εl(p)|p is a parent of a selected node}. Re-

call from Fig. 3 that each LOD cut is associated with a

semi-open interval [e1,e2); we want to find an LOD cut

with a query error bound just a bit smaller than εnew so

that the cut is as high as possible but still does not go up

to the parent. Thus we set the final query error εfinal to be

εnew −δ for a very small δ value (e.g., 10−5).

4. Use εfinal to find the LOD cut on the tree M satisfying

εfinal. This cut still goes through the selected nodes but

goes as high as possible on the other nodes.

5. In the new LOD cut, use the above technique for uniform

LOD to simplify the boundary of each node in the cut

as necessary to ensure crack-free, but modify the interior

refinement: for each selected node we refine the interior

up to satisfying ε, and for each of the remaining nodes we

just use the base-mesh interior without any refinement.

The above scheme is quite flexible in supporting differ-

ent selection methods R. The proposed view-dependent and

scalar-range queries are very effective; see Section 4.

3.3.2 Task 2: Volume Rendering on the Selected LOD

Mesh

Our technique for volume simplification and crack-free LOD

meshes is general enough for any volume renderer, while our

actual volume rendering algorithm makes use of the HAVS

volume rendering engine [CICS05]. Here we only review

the tasks of HAVS that we need to change in order to ap-

ply it in our out-of-core setting; for other details we refer

to [CICS05]. HAVS needs to extract triangle faces and then

do visibility sorting. This extraction requires all vertex and

cell information in main memory plus auxiliary data struc-

tures. When the mesh is large, it is not affordable to do this.

Here we use a triangle buffer Bt of fixed size that can fit

a constant number K of triangles. Because our sub-volumes

are designed to be small enough to fit in main memory, we

can load the sub-volumes in a desired cut one by one and

extract triangles into the buffer. If all triangles can fit in the

buffer then we use the in-core approach, sorting the trian-

gles in-core and perform HAVS rendering. Otherwise, the

buffer is written to disk when full. After reading through all

sub-volumes, there is a file containing triangles that are or-

ganized by sub-volumes, where there are duplicated trian-
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Mesh Fighter Torso SF1-x F16-x

No. verts (K) 257 1,252 16,442 32,853

No. tetras (K) 1,404 4,331 55,921 101,531

No. faces (K) 2,849 8,665 112,084 203,218

File size 47.9MB 147.7MB 2.11GB 3.9GB

HAVS mem 381MB 1.4GB 13.1GB > 13.1GB

Table 1: Mesh characteristics.

gles due to shared triangles between sub-volumes. We per-

form an external sorting (i.e., out-of-core sorting) on the tri-

angles by the viewing distances, which carries out the de-

sired visibility sorting, with duplicated triangles put together.

We then scan the file to remove the duplicates. (For sub-

sequent view-direction changes, the visibility sorting does

not involve any duplicated triangles.) Because most trian-

gles are spatially close to each other, the sorting is efficient.

Finally we perform a progressive volume rendering similar

to that in [CBPS06] (albeit not in the client-server mode):

for every K triangles we call the display function to render

a frame, where in each frame we composite the new image

with the previous frame. In this way, we greatly reduce the

main memory requirement, and also have the nice feature of

progressive volume rendering.

Our resulting volume rendering method can be used as

a simple out-of-core volume rendering engine for single-

resolution tetrahedral meshes; we call it out-of-core HAVS.

4 Results

We have implemented our technique in C/C++‡ and ran

our experiments on a Dell Precision PC with 1.5GB of

RAM, two 3GHz Intel Xeon CPUs, Nvidia GeForce 9800

GTX graphics (512MB graphics memory), and 300GB SCSI

10K rpm disk, running under Fedora-9 64bit Linux OS.

The datasets used are listed in Table 1; they are real-world

datasets from scientific applications and have been widely

used in the visualization research community. Note that

tetrahedral meshes need much more information beyond the

original input to perform volume rendering. In Table 1, we

show the memory footprints of running the original in-core

HAVS on these (original) inputs without any LOD structure;

for SF1-x the footprint is already 13.1GB.

Simplification

For the preprocessing phase, we show the results of running

our out-of-core simplification approach in the top part of Ta-

ble 2. In Task 1, we partitioned the input mesh into L sub-

volumes corresponding to the merge tree leaves. We chose

the same number (20K) of vertices in the initial leaf sub-

volumes for all datasets, which in turn decided L. We see

that the merge tree M and the connectivity graph G were

‡ For the HAVS volume rendering [CICS05] we used the code from

the authors: http://havs.sourceforge.net/.

Mesh Fighter Torso SF1-x F16-x

No. tree nodes 34 92 1187 1761

No. leaves 18 50 624 990

Tree size (KB) 1.6 4.3 55.6 82.5

Max graph size (KB) 1.4 3.8 50.2 77.6

No. faces left (%) 0.94 0.9 0.22 0.0043

Shared verts (%) 21.4 15.3 16.57 27.6

File size (GB) 0.075 0.235 2.6 4

Size increase (%) 57 59.1 23.2 2.5

Scratch space (GB) 0.053 0.252 2.6 5.5

Partition time (s) 30.66 118.27 0.49h 0.92h

Simp. time (s) 90.13 295.57 1.34h 3.53h

Total time (s) 120.79 413.84 1.83h 4.46h

Mem. usage (GB) 0.113 0.202 0.517 1.2

Simp. time (s) 72.89 512.5 N/A N/A

No. tetra. left (%) 0.94 0.90 N/A N/A

Mem. usage (GB) 0.582 1.8 N/A N/A

Table 2: Simplification results with 1.5GB of RAM. The top

part shows out-of-core results; the bottom part shows in-

core results. In the top part, “Max graph size” means the

maximum size of the connectivity graph G during simplifi-

cation. “Scratch space” means the additional disk scratch

space beyond the “File size”.

both very small and can easily fit in main memory. Recall

that the internal simplification stops when there are no more

than c vertices remaining (or when no simplification is al-

lowed); we set c as 1.5K. The overall simplification degree

is shown by “No. faces left”, which is the ratio of the number

of faces between the root sub-volume and the input mesh.

For the purpose of comparison, we also implemented an

in-core simplification approach, which reads in the input

mesh, performs the edge-collapse simplification with fold-

over checking, and stores the base mesh and the refinement

sequence, using the same implementation as our internal

simplification of sub-volumes. The results are shown in the

bottom part of Table 2, where we set the program to stop

when reaching the same numbers of vertices as the out-of-

core simplification. We see that for Torso a slight thrashing

already occurred, resulting in a slower simplification than

the out-of-core method (512.5s vs. 295.57s). Typically the

memory footprint of the in-core approach is about 12 times

the input size, which is certainly too large to handle for SF1-

x and F16-x. Clearly, our out-of-core simplification has a

significant advantage over the in-core method.

Uniform LOD Rendering

For the run-time LOD rendering, we first tested uniform

LODs. We set ε to different values and ran our algorithm;

the results are shown in Fig. 4. The corresponding resulting

images for most datasets are shown in Fig. 6 (in the sup-

plementary materials). The LOD resolution used in the ta-

ble is defined as follows. For ε = 0, the LOD resolution is

100%. For other ε values, the LOD resolution is the ratio

of the numbers of faces between this LOD and the LOD of
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Figure 4: Running times of our out-of-core volume render-

ing using uniform LODs; “res.” means resolution. All im-

ages are of size 512 × 512.

ε = 0. We set the triangle buffer size to be about 100MB.

The loading time (“load”) in Fig. 4 is from query to obtain-

ing the LOD faces. Recall that the visibility sorting is in-core

if the triangle buffer is big enough and out-of-core otherwise.

“Sort” in Fig. 4 denotes the visibility sorting time (including

the scanning to remove the duplicated faces), and “render”

denotes the volume rendering time using HAVS. If the next

query has the same ε but different viewing direction, then the

total time is the “sort” plus the “render” time where the sort-

ing does not involve duplicates. We can see that the HAVS

rendering time is very fast. Observe that the LOD support is

essential: for the largest F16-x with more than 101M cells,

using 0.21% resolution and after a loading time of 1.18s we

can interactively change the viewing direction within 0.07s

(≥ 14.28 fps), with image quality not too far from 100%

resolution. Also, we can verify that the total running time is

proportional to the LOD resolution. Moreover, our memory

footprint was at most 870MB and typically much smaller.

For the purpose of comparison, we also tested two in-core

methods: (1) in-core LOD, which takes our out-of-core sim-

plification result, reads in the tree and the sub-volumes and

keeps them in main memory, and performs the query, where

the visibility sorting is in-core sorting and the rendering is

directly using HAVS (i.e., non-progressive); and (2) in-core

HAVS, which is the original in-core HAVS on the original

Mesh Fighter Torso SF1-x F16-x

LOD resolution 66.89% 49.98% 32.80% 25.66%

No. cut nodes 12 42 192 245

OOC LOD

Total time (s) 2.27 6.78 81.92 245.61

Mem. usage (MB) 313 491 336 382

In-Core LOD

Total time (s) 2.43 6.83 > 6h N/A

Mem. usage (GB) 0.31 0.62 3.6 N/A

LOD resolution 100% 100% 100% 100%

No. cut nodes 18 50 624 990

OOC LOD

Total time (s) 3.77 18.91 383.78 1327.51

Mem. usage (MB) 369 446 629 870

OOC HAVS

Total time (s) 3.7 18.78 378.2 1182.33

Mem. usage (MB) 381 443 630 870

In-Core HAVS

Total time (s) 8.1 21.73 ≫ 24h N/A

Mem. usage (GB) 0.38 1.4 13.1 > 13.1

Table 3: Rendering results using uniform LODs with 1.5GB

of RAM for both out-of-core (top part) and in-core (bot-

tom part) methods. Out-of-core HAVS (under the same RAM

size) is also compared for single-resolution meshes. “OOC”

means out-of-core. All images are of size 512 × 512.

input mesh, without using any LOD data structure, for the

100% (single) resolution rendering. For the latter setting, we

also compared with (3) out-of-core HAVS. In Table 3, we

show the results of these methods compared with our out-of-

core results of Fig. 4 for the largest two resolutions in each

dataset (note that our memory footprints for the other two

smaller resolutions were smaller and are not shown). We

see from Table 3 that our advantage of being out-of-core is

obvious. As mentioned before, in-core HAVS needs to pro-

duce much more information beyond the original input (such

as extracting all triangle faces and producing other informa-

tion), causing a large memory footprint and thrashing. For

100% resolution, out-of-core HAVS was faster than our out-

of-core LOD because it worked on a single mesh rather than

sub-volumes with duplicated boundaries.

Selective Refinement LOD Rendering

Finally, we ran our out-of-core algorithm and tested selective

refinement LOD rendering using queries (ε,R), with R= t%

(view-dependent) and R = [a,b] (scalar-value range), on the

two largest datasets. We used a quick, low-quality uniform

LOD rendered image as shown in the left column of Fig. 5

to guide the selection of R. For SF1-x, this image was rotated

to see the color layers for choosing R (see the supplementary

short video clip showing the interaction with 3.56% of LOD

resolution, where zooming in/out is faster than rotation as

sorting is not needed). We show the results in Table 4 and

Fig. 5. Since the running time is proportional to the number

of LOD faces (as verified from Fig. 4), here we define the
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Figure 5: Representative images of our out-of-core selective-refinement LOD volume rendering. Top row: SF1-x; bottom row:

F16-x. The left column is the quick, low-quality uniform LOD image used to guide the selection of R. The next two columns to

the right are for view-dependent selection and scalar-value range queries respectively, both with ε = 0; they correspond to the

queries in Table 4. The rightmost column shows the full resolution images for the purpose of comparing the image qualities.

Method (ε = 0) view-dependent scalar-range

Mesh SF1-x F16-x SF1-x F16-x

Avg. LOD res. 58.12% 38.56% 70.05% 47.8%

No. sel. nodes 80 60 102 53

No. cut nodes 375 336 491 529

No. leaves 624 990 624 990

Total time (s) 102.36 229.15 125.84 270.70

Table 4: Out-of-core rendering results using selective re-

finement LODs with 1.5GB of RAM. Meanings of some

entries: Ave. LOD res.: Average LOD resolution; No. sel.

nodes: number of selected nodes in the LOD cut. All images

are of size 512 × 512.

average LOD resolution to be the ratio between the number

of the resulting LOD faces and the number of the faces from

the input mesh (i.e., full resolution). In fact the LOD reso-

lution defined in Fig. 4 is the same average LOD resolution

for uniform LODs. Here we let ε = 0, i.e., the full resolution

was applied to only the selected feature portions. Note that

since ε = 0, the initial (uniform) LOD cut would go through

all leaves, but we can see from Table 4 that our new LOD cut

went higher and had much fewer cut nodes. Moreover, since

we just selected a small number of nodes and all unselected

nodes in the cut used only the base-mesh interior with no

refinement, our average LOD resolution was further greatly

reduced. Comparing the corresponding images (middle two

columns vs. the rightmost column in Fig. 5), we see that they

are almost of the same image quality, but our new average

LOD resolution resulted in a much faster running time. For

F16-x the running time was improved from 22.13 minutes

(1327.51s) to 3.82 minutes (229.15s, view-dependent), and

for SF1-x the improvement was from 6.4 minutes (383.78s)

to 1.71 minutes (102.36s, view-dependent), while still re-

taining the best image quality. Comparing with out-of-core

HAVS, we also improved from 19.71 minutes (1182.33s) to

3.82 minutes (view-dependent) for F16-x, showing a huge

advantage of our out-of-core LOD approach.

5 Conclusions

We have presented a novel out-of-core simplification and

crack-free LOD volume rendering algorithm for tetrahedral

meshes. Our experiments showed that we achieve signifi-

cant speed-ups in both simplification and volume rendering.

Although our current focus is on volume rendering, our tech-

nique is readily applicable to out-of-core LOD isosurface ex-

traction as well. We plan to extend our technique along this

direction to make it a unified out-of-core LOD volume visu-

alization approach for tetrahedral meshes.
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