Dynamic and I/O-Efficient Algorithms
for Computational Geometry and
Graph Problems: Theoretical and

Experimental Results

Yi-Jen Chiang
Ph.D. Dissertation
Department of Computer Science
Brown University
Providence, Rhode Island 02912
CS-95-27
August 1995

Dynamic and I/O-Efficient Algorithms for
Computational Geometry and Graph Problems:
Theoretical and Experimental Results

Yi-Jen Chiang
Ph.D. Dissertation

Department of Computer Science
Brown University
Providence, Rhode Island 02912

August 1995

Dynamic and I/O-Efficient Algorithms for
Computational Geometry and Graph Problems:
Theoretical and Experimental Results

by
Yi-Jen Chiang
B. Sc., National Taiwan University, Taipei, Taiwan, June 1986
Sc. M., Brown University, May 1991

Thesis
Submitted in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy in the Department of Computer Science
at Brown University.

May 1996

© Copyright 1995
by
Yi-Jen Chiang

Vita

Yi-Jen Chiang was born in Taipei, Taiwan on October 28, 1962. He received his B. Sc. degree in
Computer Science and Information Engineering (CSIE) from National Taiwan University, Taipei,
Taiwan in June 1986. After two years of compulsory military service, he became a research assis-
tance in the CSIE Department at National Taiwan University. He entered the master’s program
in the Computer Science Department at Brown University in 1989, and received his Sc. M. degree
in May 1991. Later that year, Yi-Jen entered the Ph.D. program in the same department. He
completed his Ph.D. in August 1995.

Dedication

To my wife Wen-Pei Sophie Hsu
and my parents:
Wen-Jien Arthur Chiang
and

Ray-Wha Chiang

ii

Abstract

As most important applications today are large-scale in nature, high-performance methods are
becoming indispensable. Two promising computational paradigms for large-scale applications are
dynamic and I/O-efficient computations. We give efficient dynamic data structures for several
fundamental problems in computational geometry, including point location, ray shooting, shortest
path, and minimum-link path. We also develop a collection of new techniques for designing and
analyzing [/O-efficient algorithms for graph problems, and illustrate how these techniques can be
applied to a wide variety of specific problems, including list ranking, Euler tour, expression-tree
evaluation, least-common ancestors, connected and biconnected components, minimum spanning
forest, ear decomposition, topological sorting, reachability, graph drawing, and visibility represen-
tation. Finally, we present an extensive experimental study comparing the practical I/O efficiency
of four algorithms for the orthogonal segment intersection problem with large-scale test data. The
experiments provide detailed quantitative evaluation of the performance of the four algorithms,
and the observed behavior of the algorithms is consistent with their theoretical properties.

iii

Acknowledgements

I am deeply grateful to my friend and advisor Roberto Tamassia, who taught me how to do research
and also constantly gave me guidance and assistance. I am very lucky to have worked with him.
All research in this thesis was performed jointly with Roberto (except Chapter 5, for which I also
had a lot of useful discussions with him), and I really enjoyed working with him very much.

I would like to thank Franco Preparata for his kind assistance and encouragement. His insight
and guidance on research directions also influenced my research a lot. The research in Chapter 2
was done jointly with him. Interestingly, I attended Franco’s invited talk on point location in 1989
in Taiwan before I came to Brown, and that was the initiation of my interests in point location.
(At that time Franco was with the University of Illinois and I did not expect to see him at Brown;
he came to Brown in 1991—what a coincidence!)

Additionally, I appreciate the involvement of the following colleagues of mine: Michael Goodrich,
Edward Grove, Darren Vengroff, and Jeff Vitter. The research in Chapter 4 was done jointly with
them.

I thank my thesis committee, Franco Preparata and Michael Goodrich, for their helpful sugges-
tions and comments. Many thanks to Jeff Vitter and Paris Kanellakis for their encouragement and
kind help during my stay at Brown. I also thank Tom Doeppner and Peter Galvin for useful infor-
mation about the computing systems of the Brown CS department while doing the experiments of
Chapter 5.

I would like to thank the administrative staff, in particular Mary Andrade, Katrina Avery, Jen-
net Kirschenbaum, Dawn Nicholaus, and Susan Platt, for helping me in many day-to-day matters.

Many friends at Brown provided assistance and moral support: Jyh-Han Lin, Wen-Chun Ni,
Hsueh-I Lu, Shieu-Hong Lin, Yi-Jing Lin, Tu-Hsin Tsai, Ashim Garg, Ramamurthy Ravi, Sairam
Subramanian, P. Krishnan, Sridhar Ramaswamy, Manojit Sarkar, and Paul Howard.

I am deeply grateful to my wife Wen-Pei Sophie Hsu, for her constant support and comfort.
Every day was sweet and wonderful since our marriage in 1991, and her company made the stay at
Brown even more enjoyable.

Finally, I thank my father Wen-Jien Arthur Chiang and my mother Ray-Wha Chiang, both of
whom passed away right before I entered college. They taught me everything, in particular how
to think and how to live. They helped me in establishing the goal of my life, and made me love
knowledge. They showed me by themselves that studying was a part of everyday life and was very
enjoyable. In addition, my mother taught me how to play the piano, and my father taught me
literature, English, and mathematics. I am who I am now because of them. I wish they could read
this dissertation.

iv

Contents

Vita

Dedication
Abstract
Acknowledgements

1 Introduction

1.1 Dynamic Computational Geometry o0
1.2 I/O Efficient Computations

Dynamic Point Location, Ray Shooting and Shortest Paths
2.1 Introduction e

2.2 Review of Background
2.3 The Dynamics of Trapezoidal Decompositions
2.3.1 Normalization e
2.3.2 The Double-Thread Data Structure
2.3.3 Update Operations o o0 e e
2.4 Shortest Path Queries L
2.5 Point Location Queries
2.6 Ray Shooting Queries
Optimal Shortest Path and Minimum-Link Path Queries
3.1 Introduction L
3.2 Preliminaries Lo e e
3.3 Static Shortest Path Queries L
3.3.1 The Pseudo Geodesic Hourglass
3.3.2 The Case of Mutually Visible Query Polygons
3.3.3 The Overall Algorithm o
3.4 Dynamic Shortest Path Queries o oo
3.5 Static Minimum-Link Path Queries L oo o
3.6 Dynamic Minimum-Link Path Queries o 0.
3.6.1 Basic Properties
3.6.2 Two Point Queries L

4 External-Memory Graph Algorithms

4.1 Introduction

4.1.1 The Computational Model o
4.1.2 Previous Work
4.1.3 Our Results in This Chapter
4.1.4 Organization of the Chapter
4.2 Review of Lower Bounds: Linear vs. Permutation Times
4.3 PRAM Simulation e e
4.3.1 Generic Simulation of a PRAM Algorithm
4.3.2 Reduced Work Simulation for Geometrically Decreasing Computations

4.4 List Ranking

4.4.1 An Algorithmic Framework for List Ranking
4.4.2 Randomized Independent Set Construction
4.4.3 Deterministic Independent Set Construction via 3-Coloring

4.5 Applications

4.5.1 Tree Algorithms
4.5.2 Algorithms for Undirected Graphs
4.5.3 Algorithms for Planar Digraphs

5 Experiments: Practical I/O Efficiency of Geometric Algorithms

5.1 Introduction

5.1.1 Previous Related Work Lo
5.1.2 Our Results in This Chapter
5.1.3 Organization of the Chapter
5.2 The Algorithms Under Evaluation
5.2.1 Three Variations of Plane Sweep oo,
5.2.2 Distribution Sweep Lo
5.3 Experimental Setting
5.3.1 Generation and Analysis of the Test Data
5.3.2 Computing Environment and Performance Measures
5.4 Analysis of the Experimental Results

5.5 Conclusion

Bibliography

vi

61
61
61
62
62
63
63
64
64
66
66
67
67
67
68
69
70
71

73
73
73
73
74
74
75
75
76
76
81
81
87

88

List of Tables

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1

Results for static shortest-path queries. o0 0oL, 34
Results for dynamic shortest-path queries. o 0oL, 34
Results for static minimum-link-path queries. o 0oL, 34
Results for dynamic minimum-link-path queries. 35

[/O-efficient algorithms for problems on trees. The problem size is N =V =E+1.. 69

[/O-efficient algorithms for problems on undirected graphs. 70
I/O-efficient algorithms for problems on planar st-graphs. Note that E = O(V) for
these graphs. L 72

The actual and analyzed values of the average number of vertical overlaps in data
set data-short. e e e 80

vii

List of Figures

2.1
2.2
2.3

2.4

2.5

2.6

2.9

2.10

Example of a region r and its dynamic tree A(r) (Py,...,P;; are solid paths).
Proof of Lemma 2.1 L e e
All possible cases in which a solid path P crosses a splitter issuing from a cusp c.
Note that P does not change monotonicity (i.e., crosses only one splitter issuing from
¢) in (b) and (d), and P changes monotonicity (i.e., crosses both splitters issuing
fromc)in (a), (c) and ().
All possible cases in which a solid path P starts. Note that a coupler of P is needed
to provide a destination of P’ and P in (b) and (¢).
Double-thread data structure DT'(r) for region r in Fig. 2.1 : (a) basic thread trees
for P;; (b) complete structure of DT (r). The bidirectional pointers linking pairs of
corresponding thread trees and thread subtrees are omitted.
Weights w(p1), w(pe) of nodes py, e of the dynamic tree A(r): w(usz) is the sum
of the charges of all lower-level leaves of rthread(P) from left up to and including
the occurrence of v which corresponds to pz, and the charges of all lower-level leaves
of lthread(P) up to and including coupler H; w(p) is the sum of the charges of
all lower-level leaves of rthread(P) up to and including the occurrence of v which
corresponds to pi, and the charges of all lower-level leaves of lthread(P) up to and
including w. Lo
Example of splice(Py, Po; P/, P"). o o o
Example of representation of hourglasses in the nodes of ltree(Q)) and rtree(Q) of a
monotone path Q. (b) The sleeve of () (directed from left to right): the parallel lines
drawn on it represent set Y'; the points on the sleeve with labels of the type 7' delimit
fragments of the same edge; the hourglass between the extreme splitters of the sleeve
is shown grey-filled. (a) Pruned-tree ltree(Q): the nodes of ltree(Q)) are those drawn
with thick lines, while the nodes drawn with thin lines denote the subtrees of Y
pruned away to construct ltree(Q)); the grey-filled nodes are associated with closed
sleeves, and the white-filled nodes are associated with open sleeves. Next to each
white-filled node p we show the subchain of HOURGLASS(p) stored at u. (c¢) Pruned-
tree rtree(QQ) (similar comments as in (a) apply). (d) Hourglasses of the grey-filled
nodes and of their children. The subchains stored at each node are labeled and
shown with thick lines. L
Example of update of the secondary structures in an elementary join of two solid
paths. (a) Geometric construction of the hourglass. (b) Construction of the repre-
sentation of the root hourglass by means of split and join operations on the chain-
trees in the representation of the hourglasses of the children nodes.
Example of the construction of trapezoid tree 7 for map M. (a) Recursive decom-
position of M by vertical and horizontal cuts. (b) Trapezoid tree 7 associated with
the decomposition in part (a).

2.11 Representing trapezoid tree 7 by a dynamic tree. (a) The same decomposition of
M as in Fig. 2.10 (a). (b) Decomposing trapezoid tree T of Fig. 2.10 (b) into solid
paths Py, Py, ---. (¢) Actual data structure representing 7, where T'(F;) is the path
tree for solid path P; in 7. The left-to-right leaves of T'(F;) represent bottom-to-top
nodes of P;, which in turn correspond to smaller-to-bigger nested trapezoids.

2.12 Update of the trapezoid tree in consequence of an elementary split of a monotone
path in the normalization structure.

2.13 Update of the trapezoid tree caused by parting a monotone path in the normalization
structure because of an edge insertion. L Lo Lo

2.14 The situation in step 4 of the process for computing ¢’ can occur at most twice. For
i=1,2,3, ;41 is the topmost splitter above s; such that HOURGLASS(s;, S;+1) is open.
As shown, the situation of step 4 occurrs twice when (g, d) hits s; and s3, respectively.
Note that (¢, d) can not reach sy, or otherwise HOURGLASS(s3, S4) would be open and
s3 would not be the topmost splitter above sy such that HOURGLASS(sz, s3) is open.

3.1 Left and right boundaries By, and Bgr of P: (a) several choices of (¢, qz) satisfy
condition (i¢) but only one satisfies (); (b) several choices of (g1, g2) satisfy condition
(7) (e.g., (u1,ds) is also valid) but only one satisfies (i7); (c) neither (7) nor (7) alone
enforces a unique choice of (¢i, g2), but their conjunction does.
3.2 Geodesic hourglass Hg and geodesic external tangents: (a) Hg is open; (b) Hg is
closed.
3.3 A running example for Algorithm Pseudo-Hourglassin the case where 7 has no cusps
and CLI N R1 = @
3.4 Step 4 of Algorithm Pseudo-Hourglass and proof of Lemma 3.4 . As for step 4
notice how we get the bounding convex chains Crq,Cpry,Cr2 and Cprg, especially
Cr1 and Cpgy; as for Lemma 3.4 , note that Ry and Ry do not intersect any of
the bounding convex chains, S; = (uy,r1) U (u1,dy) U (dy,11), So = (I2,72), and

30

He = (a1,b1)U(az, b)) Urg (a1, az) Urg (b1, b2) is properly contained in S;US;UmUn,. 42

3.5 Step 3(b)iiA of Algorithm Pseudo-Hourglass and proof of Lemma 3.2 : ry and /; are
obtained by projecting u; and d; horizontally to the right; r; is on B and [; is on

3.6 Proof of Lemma 3.3 : (a) impossibility for Cr; to have more than one edge inter-
secting Rq; (b) finding edge (w,b). o Lo
3.7 Steps 5(b)i —5(b)ii of Algorithm Pseudo-Hourglass and proof of Lemma 3.4 : (a)
b € By, and (b,af) N (B, — {b}) = 0; (b) b € By, and (b,af) N (B, — {b}) # 0;
(c) b € Br,w"” € By, and (w”,af) N (Br, — {w"}) = 0; (d) b € Br,w"” € By, and
(w”,a)y N (B, —{w"}) # 0; (e) b € Br,w" € Br and (w”,af) N By, = 0; and (f)
b€ Br,w"” € Bpand (w”,d{)NBr, #0.
3.8 Lemma 3.6
3.9 Lemma 3.7
3.10 Lemma 3.8
3.11 Lemma 3.9 e
3.12 Lemma 3.11 L
3.13 Lemma 3.12
3.14 The cases (a)—(f) in step 2 of Algorithm Double-Search.
3.15 Computing 7r,(p, ¢) by Algorithm Prelim: the window wy following w; is chosen to
be ty since it extends farther than ¢y, andsoon.

ix

3.16 The shortest path 7¢(p, ¢) is partitioned by inflection edges ey, e and e3. The fixed
windows Wy, -+, Wy are obtained by extending the inflection edges as well as the
first and last links of 7g(p,q). . - - - . o o . o

3.17 Proof of Lemma 3.18 oL

4.1 Example of simulating an O(N)-work single step of a PRAM algorithm A: (a) the
step of A to be simulated; (b) intuitive simulation idea.

5.1 The actual numbers of intersections with respect to the number of segments in data
sets data-short, data-long and data-rect.
5.2 Computing Pr{s; N1 # @ | y(I) = u,|sj| = h} for data-short: (a) 0 < u < v/N; (b)
VN <u< N —+/N; (c) NoVN<u<N... . s .
5.3 The actual values of the average number of vertical overlaps with respect to the
number of segments in data sets data-short, data-long and data-rect.
5.4 Running Distribution on data set data-long of 1.5 x 10° segments with various
sizes of the main memory used: (a) average running times in minutes; (b) exact
numbers of I/O operations; (c) average numbers of page faults.
5.5 The results for the algorithms running on data set data-short: (a) average running
times in minutes; (b) exact numbers of I/O operations; (c) average numbers of page
faults. We run 234-Tree-Core only up to N = 10° since at this point it already
takes time much longer than the others even at N =2.5x 106,
5.6 The results for the algorithms running on data set data-long: (a) average running
times in minutes; (b) exact numbers of I/O operations; (c) average numbers of
page faults. We run 234-Tree-Core only up to N = 10° and 234-Tree only up to
N = 1.7 x 10° since at these points they already take times much longer than the
otherseven at N =2.5x 106,
5.7 The results for the algorithms running on data set data-rect: (a) average running
times in minutes; (b) exact numbers of I/O operations; (c) average numbers of page
faults. We run 234-Tree-Core only up to N = 1.1 x 10® and 234-Tree only up to
N = 1.37 x 10° since at these points they already take times much longer than the
otherseven at N =25x 106,

85

86

Chapter 1

Introduction

As most important applications today are large-scale in nature, high-performance methods are
becoming indispensable. Two promising computational paradigms for large-scale applications are
dynamic and I/O-efficient computations. We give efficient dynamic data structures for several
fundamental problems in computational geometry, and also develop a collection of new techniques
for designing and analyzing I/O-efficient algorithms for graph problems. Finally, we present an
extensive experimental study comparing the practical I/O efficiency of some geometric algorithms.

1.1 Dynamic Computational Geometry

The development of dynamic algorithms for geometric problems has acquired increasing inter-
est, motivated by many practical applications in computer graphics, robotics, VLSI layout, and
geographic information systems. Dynamic (or incremental) computation considers updating the
solution of a problem when the problem instance is modified. Many applications are incremental
(or operation-by-operation) in nature and the typical run involves on-line processing of a mixed
sequence of queries and updates on some structure that evolves over time. Considerable savings can
be achieved if the new solution need not be generated “from scratch,” especially when the problem
is large-scale.

An important task in spatial databases, computer-aided geometric design, and vehicle vulner-
ability assessment is geometric searching. Searches typically are for locating a specific point in a
geometric environment (point location) and then possibly traversing a ray “shot” from that location
until it strikes some object in the environment (ray shooting). Also, many motion planning appli-
cations require the computation of an obstacle-avoiding path between a source and a destination,
and there are various criteria used to optimize the path, for example, shortest (a path minimizing
the total length in an underlying metric), and minimum-link (a path minimizing the number of
turns).

In my master’s work [28], a fully dynamic data structure for point location in a monotone map
is presented, based on the trapezoid method. The update operations supported are insertion and
deletion of vertices and edges, and horizontal translation of vertices. This is the first fully dynamic
point location data structure for monotone maps that achieves optimal query time.

Continuing the work along this direction, in this dissertation we describe in Chapter 2 a new
technique for dynamically maintaining the trapezoidal decomposition of a connected planar map
M with n vertices, and apply it to the development of a unified dynamic data structure that
supports point-location, ray-shooting, and shortest-path queries in M. The space requirement is
O(nlogn). Point-location queries take time O(logn). Ray-shooting and shortest-path queries take

time O(log®n) (plus O(k) time if the k edges of the shortest path are reported in addition to
its length). Updates consist of insertions and deletions of vertices and edges, and take O(log® n)
time (amortized for vertex updates). This is the first polylog-time dynamic data structure for
shortest-path and ray-shooting queries. It is also the first dynamic point-location data structure
for connected planar maps that achieves optimal query time.

Exploring further on the path optimization problem, we present in Chapter 3 efficient algorithms
for shortest-path and minimum-link-path queries between two convex polygons inside a simple
polygon P, which acts as an obstacle to be avoided. Let n be the number of vertices of P, and
h the total number of vertices of the query polygons. We show that shortest-path queries can
be performed optimally in time O(logh + logn) (plus O(k) time for reporting the k edges of the
path) using a data structure with O(n) space and preprocessing time, and that minimum-link-path
queries can be performed in optimal time O(logh + log n) (plus O(k) to report the k links), with
O(n®) space and preprocessing time.

We also extend our results to the dynamic case, and give a unified data structure that supports
both queries for convex polygons in the same region of a connected planar map M. The update
operations consist of insertions and deletions of edges and vertices. Let n be the current number
of vertices in M. The data structure uses O(n) space, supports updates in O(log?n) time, and
performs shortest-path and minimum-link-path queries in times O(logh + log?n) (plus O(k) to
report the k edges of the path) and O(logh + klog®n), respectively. Performing shortest-path
queries is a variation of the well-studied separation problem, which has not been efficiently solved
before in the presence of obstacles, even in a static environment. Also, it was not previously known
how to perform minimum-link-path queries in a dynamic environment, even for two-point queries.

1.2 I/0 Efficient Computations

Input/Output (I/O) communication between fast internal memory and slower external memory is
the major bottleneck in many large-scale applications. The significance of this bottleneck is increas-
ing as internal computation gets faster, and especially as parallel computing gains popularity. Due
to this important fact, more and more attention has been given to the development of I/O-efficient
algorithms in recent years. Algorithms designed specifically to make efficient use of levels of mem-
ory are often called erternal-memory algorithms to emphasize the explicit use of memory beyond
random access main memory. The major problem is how to design external-memory algorithms
that are efficient in terms of I/O for significant applications.

In Chapter 4 we derive a collection of new techniques for designing and analyzing efficient
external-memory algorithms for graph problems, which arise in many large-scale computations in-
cluding those common in object-oriented and deductive databases, VLSI design and simulation
programs, and geographic information systems. Our techniques apply to a number of specific
problems, including list ranking, Euler tour, expression-tree evaluation, least-common ancestors,
connected and biconnected components, minimum spanning forest, ear decomposition, topological
sorting, reachability, graph drawing, and visibility representation. For all these problems consid-
ered, we give the first I/O-efficient algorithms, most of them being I/O-optimal.

Although there has been an increasing interest in the development of I/O-efficient techniques,
most of the developed algorithms, however, are shown to be efficient only in theory, and their
performance in practice is yet to be evaluated. In particular, all such algorithms assume that the
internal computation is free compared to the I/O cost, which also has to be justified in practice. An
important task in the research of I/O-efficient computation, therefore, is to evaluate the practical
efficiency of the algorithms by judicious experimentation.

In Chapter 5 we present an extensive experimental study comparing the performance of four
algorithms for the following orthogonal segment intersection problem: given a set of horizontal and
vertical line segments in the plane, report all intersecting horizontal-vertical pairs. The problem
has important applications in VLSI layout and graphics, which are large-scale in nature. The
algorithms under evaluation are distribution sweep and three variations of plane sweep. Distribution
sweep is specifically designed for the situations in which the problem is too large to be solved in
internal memory, and theoretically has optimal I/O cost. Plane sweep is a well-known and powerful
technique in computational geometry, and is optimal for this particular problem in terms of internal
computation. The three variations of plane sweep differ by the sorting methods (external vs. internal
sorting) used in the preprocessing phase and the dynamic data structures (B tree vs. 2-3-4 tree)
used in the sweeping phase. We generate the test data by three programs that use a random
number generator while producing some interesting properties that are predicted by our theoretical
analysis. The sizes of the test data range from 250 thousand segments to 2.5 million segments. The
experiments provide detailed quantitative evaluation of the performance of the four algorithms, and
the observed behavior of the algorithms is consistent with their theoretical properties. This is the
first experimental work comparing the practical performance between external-memory algorithms
and conventional algorithms with large-scale test data.

Remark. Most of the results presented in this dissertation have been published by the Author
in journals and/or proceedings of conferences: Chapters 2 and 3 are based on [26] and [29], and
summaries of the results in Chapters 4 and 5 have respectively appeared in [25] and [24].

Chapter 2

Dynamic Point Location, Ray
Shooting and Shortest Paths

2.1 Introduction

A number of operations within the context of planar maps (or subdivisions, as determined by a
planar graph embedded in the plane) have long been regarded as important primitives in com-
putational geometry. First and foremost among these operations is planar point-location, i.e.,
the identification of the map region containing a given query point; but also shortest-path and
ray-shooting queries have been considered very prominently.

Starting with the pioneering work in planar point-location of the seventies [46, 75], over the years
several techniques have been developed, culminating in asymptotically time- and space-optimal
methods [49, 72, 103] that are also of sufficiently practical flavor. Such methods, however, refer
to the static case where no alteration of the map is allowed during its use. Due to the obvious
importance of the dynamic setting, in recent years considerable attention has been devoted to the
development of dynamic point-location algorithms [8, 23, 28, 54, 57, 89, 94, 95, 112].

All the known dynamic point location results are for connected maps, since maintaining region
names in a disconnected map would require solving half-planar range searching in a dynamic en-
vironment, for which no polylog-time algorithm is known. The best results to-date for dynamic
point-location in an n-vertex connected map are due to Cheng-Janardan [23] and Baumgarten-
Jung-Mehlhorn [8]. The technique of [23] achieves O(log®n) query time, O(logn) update time,
and O(n) space. The data structure of [8] has query and insertion time O(lognloglogn), deletion
time O(log® n), using O(n) space, where the time bounds are amortized for the updates. In many
real-time applications, point-location queries are executed more frequently than updates, so that it
is often desirable to achieve optimal O(logn) query time in a dynamic setting. The only previous
technique that supports O(logn)-time queries in a dynamic environment is restricted to monotone
maps [28]. For a survey of dynamic point-location techniques and other dynamic algorithms in
computational geometry, see Chiang and Tamassia [27].

Algorithmic research on shortest-path and ray-shooting queries has also experienced steady
progress, resulting in time-optimal techniques for the static setting [1, 21, 22, 63, 76]. In particular,
the linear-space data structures of Chazelle-Guibas [21] and of Guibas-Hershberger [63] support in
O(logn) time ray-shooting and shortest-path queries, respectively, in a simple polygon with n ver-
tices. No polylog-time method was previously known in a dynamic setting, although a polylog-time
ray-shooting technique by Reif and Sen [99], designed for monotone polygons, may be extensible to
the general case. Sublinear-time techniques are known only for ray-shooting queries [1, 22], with

O(y/npolylog(n)) query/update time; they support ray-shooting in a set of possibly intersecting
segments without taking advantage of the structure of planar maps.

A property that appears to greatly facilitate the development of dynamic point-location tech-
niques is monotonicity ([28, 57, 94]). Whereas the restriction to monotone maps is quite adequate
for many important applications, yet the exclusion of more general maps is a severe shortcoming.
In the static case, a connected map can be reduced to monotone (or, as we say in this section,
normalized) by the straightforward insertion of (auxiliary) diagonals. The same approach, when
attempted for the dynamic setting, could lead to onerous updates, such as when the insertion of an
edge causes the removal of a very large number of normalizing diagonals. A rather complicated and
only partially documented technique due to Fries [53], is reported to assure that only a logarithmic
number of normalizing diagonals be involved in any update.

In this chapter we combine the feature just stated with the underpinnings of the trapezoid
method, whose search efficiency both in theory [16, 92] and practice [47] is well-established. This
leads to the adoption of horizontal normalizing diagonals, called lids. The method rests on three
major components:

1. A normalization structure that transforms a connected map into a monotone one by the
addition of horizontal diagonals, while guaranteeing that no more than a logarithmic number
of such diagonals are affected by insertions/deletions of edges/vertices.

2. A hull structure that stores the convex hulls of the chains and subchains of the monotone
subregions, so that ray-shooting and shortest-path queries can be efficiently performed.

3. A location structure that represents a recursive decomposition of the normalized map into
trapezoidal regions, and supports point-location queries in optimal time.

It is important to underscore that a single tree structure—the normalization structure—provides
the unifying framework for the three applications considered. In fact, this structure, while ensuring
efficient updates by controlling the size of the modifications, can be naturally augmented with
node-appended secondary structures to support shortest-path and ray-shooting queries. It can
also be supplemented with a distinct, but tightly coupled, location structure designed for efficient
point-location. The main normalization structure and its two auxiliary components act in a tightly
integrated fashion: point-location is crucially used in shortest-path and ray-shooting queries and
in the update of the normalization structure.

The fundamental constituents of our data structures are monotone chains and trapezoids de-
termined by edges and horizontal lines through vertices. This provides the unifying framework
for the three applications mentioned earlier. Indeed, a simple augmentation of the normalization
structure provides the right environment for all three queries, as we shall illustrate. It should be
underscored that, although their linkings are obviously elaborate, the elementary data structures
employed are particularly simple, so that not only asymptotic efficiency is established, but also
practical potential is apparent.

Our main results in this chapter are outlined in the following theorem:

Theorem 2.1 There exists a fully dynamic data structure that supports point-location, ray-shooting,
and shortest-path queries in a connected planar map M with n vertices. The space requirement is
O(nlogn). Point-location queries take time O(logn). Ray-shooting and shortest-path queries take
time O(log®>n) (plus O(k) time if the k edges of a shortest path are reported in addition to its
length). Updates take O(log® n) time (amortized for vertez updates).

As a corollary, we can also perform stabbing queries, i.e., determine the k edges of map M
intersected by a query segment, in O((k + 1) log® n) time.
The contributions of this chapter can be summarized in the following points:

e We present the first polylog-time dynamic data structure for shortest-path queries in con-
nected planar maps. All previous data structures for shortest paths are static and take linear
time for either queries or updates when used in a dynamic environment.

e We provide the first polylog-time dynamic data structure for ray-shooting queries in connected
planar maps. The previous best result is O(y/n polylog(n)) query time.

e We present the first dynamic data structure for point location queries in connected planar
maps with optimal O(logn) query time and polylog update time. The previous best result is
O(log nloglogn) query time.

e We provide the first dynamic point-location data structure that checks the validity of an edge
insertion, i.e., whether the new edge does not intersect the current edges of the map. Previous
dynamic point location data structures did not have such a capability due to the lack of an
efficient dynamic ray-shooting technique.

The rest of this chapter is organized as follows. In Section 2.2 we briefly review the terminology
of planar maps and the basic data structures used by our method. The mechanics of the dynamic
maintenance of a normalized map are described in Section 2.3, while Sections 2.4, 2.5, and 2.6 are
respectively devoted to shortest-path, point-location, and ray-shooting queries.

2.2 Review of Background

For the geometric terminology used in this chapter, see [93]. A connected planar map M is a
subdivision of the plane into polygonal regions whose underlying planar graph is connected. The
map is augmented with two vertical rays, one directed toward y = +00, the other toward y = —oo,
respectively issuing from the vertices of M with maximum and minimum y-coordinates. Thus, all
but two regions of M are bounded simple polygons. In the following, n denotes the number of
vertices of the planar map M currently being considered. Also, we assume that no two vertices of
M have the same y-coordinate; the degenerate cases can be handled by standard techniques and
will not be discussed in this chapter.

In the plane we have an orthogonal frame of reference (z,y). A polygonal chain v is monotone
if any horizontal line intersects it in a single point or in a single interval or not at all. A simple
polygon r is monotone if its boundary consists of two monotone chains. A cusp of a polygon is a
vertex v whose internal angle is greater than 7 and whose adjacent vertices are both strictly above
(lower cusp) or strictly below (upper cusp) v. A polygon is monotone if and only if it has no cusps.
A map is monotone if all its regions are monotone.

The trapezoidal decomposition of a connected map M is obtained by drawing from each vertex v
of M two horizontal rays that either remain unbounded or terminate when they first meet edges of
M: the resulting segments are called splitters. It is easily verified that a region of M with s vertices
is partitioned by the splitters into s — 1 trapezoids (see Fig. 2.1). The trapezoidal decomposition
of M is geometrically dualized by mapping each of the obtained trapezoids 7 to an arbitrary point
d(7) in the interior of 7: each of the splitters is mapped to an edge between images of trapezoids
in the usual way. We let §(M) denote the resulting dual graph, which is a forest of trees since the
trapezoids of a single region r € M dualize to a tree 6(r) (because r has no holes). Note that each
node of §(r) has degree at most four. Let s;, i = 1,2, denote either a splitter or an extreme vertex
of region r. Then SLEEVE(sq, s2) denotes the union of the trapezoids traversed by the shortest path
within r between any point of s; and any point of s;. (Note the duality between “sleeves” in region
r and paths in tree §(r).) In a notationally consistent manner, §(s) denotes the edge of §(r) that
is the dual of splitter s.

Our data structures are based on a variety of balanced search trees. We observe that all the
standard operations on balanced search trees (insertion, deletion, split, and join) can be performed
by means of a logarithmic number of more basic primitives, which we call “elementary joins and
splits”, defined as follows:

e An elementary join of two binary trees T} and T3 forms a new tree T by making T; and T,
the left and right subtrees of a new root node.

o An elementary split yields the left and right subtrees T} and T3 of T' by removing its root.

In particular, a simple rotation can be viewed as a sequence of four elementary splits and joins.

Three special types of data structures will be used in this chapter: biased binary trees [10],
BBJa]-trees [81], and dynamic trees [104].

A biased binary tree [10] is a binary search tree whose leaves store weighted items. Let w be
the sum of all weights. We have that the depth of a leaf with weight w; is at most log(w/w;) + 2,
and each of the following update operations can be done in O(log w) time: change of the weight of
an item, insertion/deletion of an item, and split/splice of two biased trees [10].

A BBl[o]-tree [81] (where « is a fixed real, with { < a < 1-— 3@) is a binary search tree and
has the following important properties (among others):

e A BB[al-tree with n nodes has height O(logn).

e Assume that we augment a BB[a]-tree with secondary structures stored at its nodes. Let
the subtree with root p have £ leaves, and let the time for updating the secondary structures
after a rotation at node p be O(flogf). Then the amortized time of an update operation in a
sequence of n insertions and deletions starting from an initially empty BB[a]-tree is O(log2 n).

Dynamic trees [104] are designed to represent a forest of rooted trees, with each edge directed
toward the root of its tree (and called an arc). Some important operations (among others) supported
by dynamic trees include:

link(p,v): Add an arc from p to v, thereby making p a child of v in the forest. This operation
assumes that p is the root of one tree and v is a node of another tree.

cut(p): Delete the arc from p to its parent, thereby dividing the tree containing x into two trees.
evert(u): Make p the root of its tree by reversing the path from g to the original root.

Each arc of the trees is classified as solid or dashed, so that each tree is partitioned into a
collection of solid paths, connected by dashed arcs. A solid path is maintained by a data structure
called a path tree. Using biased binary trees [10] as the standard implementation of path trees, each
of the above operations takes O(log n) time, where 7 is the size of the tree(s) in the forest involved.

2.3 The Dynamics of Trapezoidal Decompositions

Given a connected map M, our objective is first to systematically transform (normalize) it into a
monotone map, and then to illustrate how to efficiently maintain it under a dynamic regimen of
edge and vertex insertions/deletions.

2.3.1 Normalization

We first address the problem of normalization. Each region r of M is handled individually. We
refer to a region r, bounded or unbounded. In the following, we denote by m the current number
of vertices in r.

-1

We imagine to represent §(r) as a dynamic tree A(r) [104] (see Fig. 2.1). We choose an
arbitrary node of §(r) as the root, which immediately forces a direction on each edge, referred to
hereafter as an arc and directed toward the root. Since we have chosen to dualize each trapezoid
to a point in its interior, the y-component of each arc has a well-defined sign. An arc is usually
denoted either by a single letter or by an ordered pair (origin, destination). The arcs are classified
as follows: letting w(u), weight of u, denote the number of nodes in the subtree rooted at node ,
an arc (u,v) is classified heavy if w(p) > %w(u), and light otherwise. Consequently, at most one
heavy arc enters a node of A(r). Note that the attributes {light, heavy} pertain uniquely to the
weight structure of the dynamic tree A(r).

Arcs are also classified as solid or dashed to enforce the property that at most one solid arc
enters a node of A(r). The maximal paths of consecutive solid arcs (possibly consisting of a single
node) are called solid paths, and each corresponds to a sleeve of r. Note that the attributes {dashed,
solid} pertain to a given, but otherwise arbitrary, decomposition of r into sleeves.

The weight structure and the sleeve decomposition are tied by the following weight invariant,
which holds before and after the execution of data structure operations (queries or updates):

“heavy arcs are solid and light arcs are dashed.”

However, during the execution of operations, we may change heavy arcs to dashed and light arcs to
solid, and thus loose the original correspondence. The weight invariant is restored at the completion
of each operation.

Region r contains a set of splitters, called lids, which are the duals of the following arcs:

Rule 1. All dashed arcs.

Rule 2. Any two consecutive solid arcs whose y-components have opposite signs.

Note that each lid is generated by a vertex of r. The set of lids normalizes r. Namely, we have

Lemma 2.1 The set of lids partitions r into a collection of monotone polygons.

Proof: Let ¢ be a cusp of polygon r. We consider the two arcs of A(r) which are the duals of
the two splitters issuing from c. If at least one of them is dashed (see Fig. 2.2(a)), then there is at
least one lid issuing from cusp ¢ corresponding to the dashed arc (Rule 1). If on the other hand
both arcs are solid, then one must have a positive y-component and the other a negative one, or
otherwise they would enter the same node of A(r) and thus would violate the property that at most
one solid arc enters a node (see Fig. 2.2(b)). Then these two arcs are consecutive solid arcs with
y-components of opposite signs, and there are two lids from ¢ corresponding to these arcs (Rule 2).
Hence there is always at least one horizontal lid issuing from each cusp ¢ of r, thereby achieving a
decomposition of r into monotone polygons. O

Lemma 2.2 Each directed path of the dynamic tree A(r) contains at most log, m light arcs.

Proof: Moving away from the root, each light arc traversed reduces the size of the current subtree
by at least one half, since w(child) < Jw(parent). O

Corollary 2.1 Any straight line drawn in region r crosses O(logm) lids.

Proof: The weight invariant is always preserved before and after the execution of data structure
operations. Each lid then corresponds to either (i) a light arc (Rule 1, since dashed arcs are light),
or (i7) a solid arc at which the solid path containing this arc changes monotonicity with respect
to the y-axis (Rule 2). By Lemma 2.2, any straight line / drawn in r crosses O(logm) lids of type
(2). Now consider the lids of type (¢¢). Lemma 2.2 also implies that [goes through O(logm) solid
paths. Observe that each solid path P can be partitioned into maximal monotone subpaths, and [

Figure 2.2: Proof of Lemma 2.1.

can go through at most one such monotone subpath, thus crossing at most two lids of solid arcs of
P. It follows that the number of lids of type (i7) crossed by [is also O(log m). O

2.3.2 The Double-Thread Data Structure

It is intuitively clear that insertion or deletion of an edge may substantially modify the set of
trapezoids, whereas it alters only slightly the structure of region boundaries. For this reason we
adopt a data structure that represents a solid path of A(r) by two “threads”; these two threads
respectively correspond to two chains whose union is the boundary of the sleeve associated with
the solid path. The proposed structure is referred to as double-thread data structure for region r,
denoted by DT (r).

Each arc o of A(r) can be drawn to intersect its dual splitter issuing from some vertex v of r.
Therefore we associate o with v. Notice that each vertex v in M is associated with two arcs: if v is
a cusp of some region r, then the two splitters issuing from v both lie in r and thus cross two arcs
of A(r); otherwise, v belongs to two regions ry and r3 and the two splitters issuing from v cross
respectively an arc of A(ry) and an arc of A(ry). Instead of maintaining the nodes of A(r), we
choose to maintain the arcs of A(r) using the vertices of r as their representatives, by associating
each node of A(r) to the arc issuing from it. As a consequence, each solid path P is represented by
two binary trees lthread(P) and rthread(P), referred to as thread trees, whose implementation is
described below. Recall that each solid path is directed toward the root. Each vertex v associated
with an arc on solid path P is classified as follows: walking along P toward the root, vertex v is
classified left if it lies to the left of P, and right otherwise. Notice that if P is followed by a dashed
arc « (every solid path except the one terminating at the root of A(r) has this property), then we
also include « as an arc on solid path P in our representation.

The arcs of a solid path P can be partitioned into maximal monotone (on the basis of the signs
of their y-components) subpaths Q1, @2, - -+, Qr. Our thread trees lthread(P) and rthread(P)
are each implemented as a two-level (called lower and upper) balanced binary tree (i.e., the roots
of lower-level trees are leaves of the upper-level tree). Referring to lthread(P), in the lower level,
we have a balanced binary tree ltree(Q;) for each Q);, where the leaves of ltree(Q;) store the left
vertices of); in their path order. Thread tree rthread(P) is analogously organized, with rtree(Q;)
storing the right vertices. The roots of ltree(Q);) and rtree(Q);) are bidirectionally linked. In
the upper level, lthread(P) (and analogously rthread(P)) has the roots of ltree(Q1), ltree(Q2),
-+, ltree(Qg) as leaves in their path order. A bidirectional link also exists between the roots of
Ilthread(P) and rthread(P). An example is shown in Fig. 2.5(a).

Any node on P might be pointed to (via dashed arcs) by some other solid paths in the dynamic
tree A(r). Suppose that P’ points to P via an arc o associated with vertex v’. Two situations
may now occur: (i) vertex v’ is also associated with an arc of P (e.g., see paths P, P3 and Py
in Fig. 2.1 with P = P;). Then v is a left or right vertex of P (thus stored as a lower-level
leaf of Ithread(P) or of rthread(P)). We establish a pointer from each root of lthread(P') and
rthread(P') to that lower-level leaf v’ (see Fig. 2.5(b)). The possible instances of this situation are
illustrated in Figure 2.3(b, d). (ii) vertex v’ is not associated with an arc of P (e.g., see paths Ps
and Pr in Fig. 2.1 with P = P;). This occurs if P changes monotonicity (by crossing both splitters
of a cusp ¢) at the node reached by arc o'. In this case, in order to provide a destination for the
pointers from the roots of lthread(P’) and rthread(P’), we introduce an auxiliary leaf, called a
coupler (usually denoted by letter H), inserted between the two consecutive subtrees (both either
ltree’s or rtree’s) of the thread tree not containing cusp ¢ (see Fig. 2.5(b)). The possible instances
of this situation are illustrated in Figure 2.3(c, e).

Note that a pointer destination may be needed when a solid path P begins (Fig. 2.4(b, ¢) and

10

Figure 2.3: All possible cases in which a solid path P crosses a splitter issuing from a cusp c.
Note that P does not change monotonicity (i.e., crosses only one splitter issuing from ¢) in (b) and
(d), and P changes monotonicity (i.e., crosses both splitters issuing from c) in (a), (c) and (e).

Fig. 2.1 for P = P;). In this case we adopt the convention to insert a coupler preceding either
ltree(Q1) or rtree(Q1), where)y is the initial monotone subpath of P (see Fig. 2.5(b)). The overall
data structure DT (r) consists therefore of two rooted trees of indegree at most 4 (see Fig. 2.5(b)).

(@)

Figure 2.4: All possible cases in which a solid path P starts. Note that a coupler of P is needed
to provide a destination of P’ and P” in (b) and (c).

We now define a new parameter of nodes of DT (r) (DT-nodes), called charge, which will be
used to maintain the weights of the nodes of the dynamic tree A(r). Each DT-node corresponding
to a vertex of r (a leaf of a lower-level tree) is labelled distinguished; the charge of a DT-node is
the number of the distinguished nodes in the subtree of which it is the root.

According to its definition, the weight w(p) of a node p of A(r) is the number of the nodes in
the subtree of which it is the root, or, equivalently, the number of the arcs in this subtree plus the
arc « issuing from p. It is immediate that, denoting by v the vertex associated with arc a and by

11

(@)

Ithread(R) : rthread(R) :
20 19 7 6 5 32 33 34 3435394042
(b)
lthread(R) : Ithread(R)
Ithread(R4) d
rthread(R;) A [\ 2 2
20 19//|| 76 rthread(R)
Ithread
(o) Ithread(R)
rthread(Rg) Ithread(R3) 5
25 26 rthread(R) = Ahead®
Ithread(R) ~_ rthread(R) rthread(R)
20 910
13141516
rthread(kg) ~
22 23 rthread(R) :
lthread(R) »32 33 34 34 353940 Ithread(a)
Azg Ithread(a)
rthread(R3) i rthread(a rthread(B)
3132 38 39

Figure 2.5: Double-thread data structure DT(r) for region r in Fig. 2.1: (a) basic thread trees
for P;; (b) complete structure of DT'(r). The bidirectional pointers linking pairs of corresponding
thread trees and thread subtrees are omitted.

(); the monotone subpath containing «, this number is obtained as the sum of two items: (1) the
sum of the charges of all lower-level leaves (actually leaves or couplers) up to and including v in the
thread tree containing v, and (2) in the other thread tree, the sum of the charges of all lower-level
leaves preceding v*, where v* is the first vertex on monotone subpath (; whose splitter follows the
splitter issuing from v, or if v* does not exist (because); terminates at v), the sum of the charges
of all lower-level leaves up to and including the last leaf of the appropriate subtree of @; (either
ltree(Q;) or rtree(Q;)). For example, let us look at w(uy) and w(pe) in Figure 2.6. For w(us),
v* = s, thus w(uz) is the sum of the charges of all lower-level leaves of rthread(P) from left up
to and including v which corresponds to pg, and the charges of all lower-level leaves of lthread(P)

up to and including coupler H; for w(u1), v* does not exist, and thus w(u,) is the sum of the

12

charges of all lower-level leaves of rthread(P) up to and including v which corresponds to p1, and
the charges of all lower-level leaves of lthread(P) up to and including u. Clearly, we can locate
v* or decide its nonexistence in logarithmic time, using the y-coordinate of v to perform a binary
search on either ltree(Q;) or rtree(Q);) of the thread tree that does not contain v.

(@) ®)iread(p)

threag(e)

rthread(P)

DANAN
t[;/ l\gz
—

\4

2
1

Figure 2.6: Weights w(u), w(p2) of nodes piq, o of the dynamic tree A(r): w(pz) is the sum
of the charges of all lower-level leaves of rthread(P) from left up to and including the occurrence
of v which corresponds to pg, and the charges of all lower-level leaves of lthread(P) up to and
including coupler H; w(py) is the sum of the charges of all lower-level leaves of rthread(P) up to
and including the occurrence of v which corresponds to uq, and the charges of all lower-level leaves
of lthread(P) up to and including u.

The preceding discussion establishes the following lemma.
Lemma 2.3 The space complezity of the normalization structure for an n-vertex map is O(n).

Our data structure has an auxiliary component, called dictionary. The dictionary stores the
names of vertices, edges and regions, so that their representatives occurring in various places in the
normalization structure, hull structure and location structure (see Sections 2.4 and 2.5), etc., can
be efficiently accessed. The edges of a region r are also maintained in the dictionary by a balanced
binary tree according to their circular order, with the root of the tree storing the name of r. We
store with each edge e two pointers respectively to its left and right representatives in such trees,
so that given e, the region r to its left (resp. right) can be found by accessing its left (resp. right)
representative and walking up to the root of the tree of r. It is easy to see that accessing and
updating the dictionary can be performed in logarithmic time, and that the dictionary does not
affect the space complexity of our data structure. Therefore we omit any further discussion of the
dictionary in the rest of the chapter.

13

2.3.3 Update Operations

We define the following update operations on a connected map M:

INSERTEDGE (€, vy, vg, 7 71, 72): Insert edge e = (vy, v2) into region r such that r is partitioned into
two regions r; and rs.

REMOVEEDGE (e, v1, g, 71, 72;7): Remove edge e = (v1, v2) and merge the regions r; and r; formerly
on the two sides of e into a new region r.

INSERTVERTEX (v, €; €1, €2): Split the edge e = (u, w) into two edges e; = (u,v) and ez = (v, w) by
inserting vertex v along e.

REMOVEVERTEX (v, €1, €3;€): Let v be a vertex with degree two such that its incident edges e; =
(u,v) and e3 = (v, w), are on the same straight line. Remove v and merge €; and e, into a single
edge e = (u, w).

ATTACHVERTEX (v1, €; v2): Insert edge e = (v1,v2) and degree-one vertex vy inside some region r,
where vy is a vertex of r.

DETACHVERTEX (v, €): Remove a degree-one vertex v and edge e incident on v.
With the above repertory, the following theorem is immediate.

Theorem 2.2 An arbitrary connected map M with n vertices can be assembled from the empty
map, and disassembled to obtain the empty map, by a sequence of O(n) operations drawn from the set

{ point-location query, INSERTVERTEX, REMOVEVERTEX, INSERTEDGE, REMOVEEDGE, ATTACHVERTEX,
DETACHVERTEX }.

Now we show that ATTACHVERTEX and DETACHVERTEX can be simulated by a sequence of
O(1) operations taken among the first four of the repertory and point-location query. Referring
for simplicity to ATTACHVERTEX(vy, €;v3), we have the following emulation routine: perform a
point-location query of vy to obtain the region r containing it (which also provides the trapezoid
containing v,), compute the two horizontal projection points v’ and v” of vy on the boundary of
r, insert vertices v’ and v”, insert edge (v’,v"), insert vertex vy on (v, v"), insert edge e, remove
edges (v',v3) and (vq,v”) and finally remove vertices v’ and v”.

In the rest of this section, we describe how to implement the first four operations of the above
repertory on the dynamic tree A(r) of an arbitrary region r (a simple polygon), represented by the
double-thread data structure described above.

Primitive dynamic tree operations

We begin by considering some elementary dynamic tree operations ezpose, conceal and evert in-
troduced in [104], in terms of which the operations of the above repertory can be immediately
expressed. In the course of some updates, we may change a solid arc to dashed and wvice versa and
thus violate the weight invariant; so we need the capability to restore such weight invariant. Such
actions are effected by the operation ezpose and conceal introduced in [104]. Operation ezpose(u),
for some node p of A(r), transforms the unique path P from node p to the root of A(r) into a
solid path, by changing the dashed arcs in P to solid and the solid arcs incident to P to dashed.
Since this transformation may violate the weight invariant of dynamic trees, the inverse operation
conceal(P) is used to remove the violation, by identifying all the light arcs in P and making them
dashed, and also identifying all heavy arcs (if any) among the arcs incident to P and making them

solid.

14

The primitive operation used in ezpose and conceal is splice(Py, P2; P', P"), acting on two given
paths Py and P, to produce two new paths P’ and P” (see Fig. 2.7). Originally solid path P, points
to node p of solid path P via a dashed arc a. Denoting by o' the (solid) arc of P, terminating at
p (if any), splice exchanges the roles of a and o/, i.e., it creates two new solid paths P’ and P”
with P” pointing to P’ via dashed arc o/ (again, P” and o/ might be empty).

Q |

-1

p'

=
Q

e il |

p"

o o — — — 4

Figure 2.7: Example of splice(Py, Py; P', P").

Operation splice(Py, Py; P', P") essentially involves splitting and concatenating both threads
of the paths concerned. Specifically, Ithread(P;) is split into lthread(P") and lthread(P"), and
then lthread(P,) is concatenated with lthread(P") to form lthread(P'); analogously for rthread.
Operation splice may require either the insertion or the deletion of a coupler (see, for example,
splicing P, to Py (insertion) and Ps to P; (deletion) in Fig. 2.1). Since a constant number of
splits/concatenations have to be performed, we have the following lemma.

Lemma 2.4 Operation splice can be executed in O (log m) time on the double-thread data structure.

Since each directed path in A(r) contains at most log, m light arcs by Lemma 2.2 (each accessible
by climbing to the root of an O(logm)-depth thread tree), ezpose uses at most log, m splice
operations, and therefore is executed in O(log? m) time.

Given a solid path P, operation conceal(P) identifies the light arcs of P which have to be made
dashed and the heavy arcs (if any) incident to P which have to be made solid in order to comply
with the weight invariant of dynamic trees. It can be carried out by finding the topmost (i.e.,
closest to the root of A(r)) light arc «, splitting P at «, removing the subpath from the root up to
and including «, and then repeating the process for the remaining solid path, until no light arc is
found. The heavy arcs incident to P can then be identified (and made solid) in a straightforward
way: each time a light arc (u,v) is found, we check all (up to three) arcs incident to v to see if
any one of them is heavy; finally, we also apply this checking process to the arcs incident to the
bottommost node of P. So the main issue for performing conceal(P) is how to find the topmost
light arc.

Before describing its adaptation to the double-thread data structure, we briefly review the
standard implementation of operation conceal as proposed by Sleator and Tarjan [104]. Let the
dynamic-tree-nodes of solid path P be stored left-to-right as the leaves of a balanced binary tree
T(P), called in [104] a path tree. Each leaf ¢ of T(P) stores local_weight((), defined as the sum
of the local weights of all dashed-arc children (which are the roots of some other path trees) of

15

¢, if any, plus one (to account for ¢ itself). For each internal node 7, local weight(n) is defined
as the sum of the local weights of its children. Note the similarlity between the local weights of
nodes in path tree T'(P) and charges of nodes in thread trees lthread(P) and rthread(P) defined in
Section 2.3.2. Actually, parameters local weight and charge are identical except for their usages in
computing w(p)—the weight of a dynamic-tree-node p: in T'(P), w(u) is the left to right prefix-sum
of the local weights of the leaves, whereas in thread trees, w(u) is contributed by the prefix-sums
of the charges of the leaves in both lthread(P) and rthread(P) (see Section 2.3.2). Let T), be the
subtree of T'(P) rooted at internal node 5. Denoting by A the rightmost leaf in T}, and by £ the leaf

adjacent to A on the left, variable le fttilt(n) is defined by lefttilt(n)éw(f) — local 2weight(X). We
recall that arc (&, A) of P is light if and only if w(£) < w(), ie., w(§) < L (w(&)+local weight(N)),
which yields le fttilt(n) < 0.

Moreover, define leftmz'n(n)émin{lefttilt(f)) : 8 is an internal node of T, }. It follows that if
leftmin(n) > 0, then there is no light arc between any two adjacent leaves of T,. Also, variable
netle ft(n) is defined as le ftmin(n) if 5 is the root of T'(P) and leftmin(n) — le ftmin(parent(n))
otherwise. Correspondingly, variables netright(n), rightmin(n), and righttilt(n) are defined sym-
metrically in a straightforward manner by summing the local weights from right to left for the
purpose of reversing the path direction. In summary, each internal node 1 of T'(P) stores three
values: local_weight(n), netleft(n), and netright(n).

To find the topmost light arc in P, we traverse a path from the root of T'(P) with the following
advancing mechanism: Assume inductively that, for the current node 7, parameter leftmin(n)
(< 0) is known. Let " and 7" be the left and right children of 7, respectively, and £ be the leftmost
leaf of T,. From the definition

netle ft(n") = leftmin(n") — le ftmin(n)

we obtain leftmin(n”). If leftmin(n”) < 0, then we proceed to n”. Otherwise, we compare
local weight(n') and local _weight(§). If local weight(n') < local_weight(§), then the arc leading
to & is the sought light arc; else, we compute leftmin(n’) = leftmin(n) + netleft(n') (which is
necessarily < 0) and proceed to 1’ (this establishs the inductive step). By this process akin to
binary search, the topmost light arc can be found in O(logm) time. Recall that by Lemma 2.2,
there are at most log, m light arcs in T'(P).

We are now ready to consider the implementation of conceal for the double-thread data struc-
ture. We treat thread trees lthread(P) and rthread(P) independently as two path trees, with
parameter charge playing the role of local weight. By the method just illustrated, we identify at
most log, m light arcs from each of lthread(P) and rthread(P). Note that a light arc (£, A) in
P assures the existence of a light arc (&', A) in either lthread(P) or rthread(P) that contains leaf
A, where £ is the left-neighboring leaf of A. Indeed, in T(P), the sum w() of the local weights
up to and including £ satisfies w(§) < local weight(A); but in the appropriate thread tree (i.e.,
either lthread(P) or rthread(P) that contains A), the sum w’ of the charges up to and including
&' is only a fraction of w(&) (w(€) is contributed by both lthread(P) and rthread(P)), so that
w' < w(€) < local_weight(\) = charge()), and (&', A) is light. Hence 2log, m light arcs from
lthread(P) and rthread(P) give all possible candidates for light arcs in P. For each such candidate
(&', X), we perform a binary search in the paired thread tree to locate the point just before A, at
the same time accumulate the total charge w” up to and including this point in that tree, then
compute w(§) by adding w” to w’, and check if w(§) < charge(X) (= local_weight())). Therefore,
we find 2log, m candidates, perform 2log, m binary searches for checking, identify at most log, m
light arcs in P (and also at most log, m + 1 heavy arcs incident to P), and then split and join P
accordingly—each of these operations within O(logm) time. This leads to the following lemma.

16

Lemma 2.5 The update of the double-thread data structure as required by the operation conceal
can be performed in O(log® m) time.

Operation evert(u), for an arbitray node p of A(r), moves the root of A(r) to u while preserving
the weight invariant. If we can reverse the direction of a solid path, then evert(p) can be carried out
as follows: we perform expose(y) to obtain a solid path P from pu to the original root, reverse the
direction of P (which effectively moves the root to x), and then perform conceal(P) to comply with
the weight invariant. We add a “direction” bit to each node of the thread trees, so that when we
reverse the direction of a solid path P, the direction bit of the root of lthread(P) is complemented,
indicating that the meanings of left and right subtrees of lthread(P) are interchanged; similarly
for the direction bit of the root of rthread(P). Also, these two complemented bits indicate that
Ithread(P) means rthread(P) and vice versa. Given the direction bits and operations ezpose and
conceal, we can perform evert in the double-thread data structure in O(log? m) time.

In the following, if x is a node of A(r) and @ an incoming arc of yu, the notations ezpose(a) and
expose(y) are equivalent, and similarly for evert.

Lemma 2.6 Given splitters s1 and sy of region r with m wvertices, SLEEVE(S1, sz) and the cor-
responding solid path between §(sy) and &(sy) can be constructed in O(log® m) time, by means of
O(log® m) elementary splits/joins of thread trees.

Proof: We obtain a solid path between 6(s;) and 6(s) by evert(§(s;)) and expose(d(sz)). Each of
operations evert and expose uses O(log? m) elementary splits/joins and takes O(log? m) time. O

The double-thread structure adds two new primitive operations to the original repertory of
dynamic trees. Operation part(P, e; P, P;) on a solid monotone path P separates lthread(P) and
rthread(P), and creates two new solid paths P, and P, by adjoining lthread(P) and rthread(P)
to a new edge e. Namely, lthread(P,) = lthread(P), rthread(Py) = e, lthread(P;) = e, and
rthread(Py) = rthread(P). The operation pair(Py, Py; P, €) is the inverse operation of part(P, e; Py, P;)
and is implemented similarly.

Lemma 2.7 Operations part and pair have time complezity O(1).

As we shall see in the next section, operations part and pair are crucial in the efficient execution
of INSERTEDGE and REMOVEEDGE.

Insertion and deletion of edges and vertices
Operation INSERTEDGE(e, v, vg, 771, 72) is carried out as follows:

1. For i = 1,2, if v; is an extreme vertex of r, let s; = v;, else let s; be a splitter of r induced by
v;. If v; is a cusp of r then there are two such splitters; by viewing edge e = (v, v2) as issuing
from wv;, s; is taken as the left splitter of v; if e goes toward left (and as the right splitter
otherwise), so that SLEEVE(sy, s3) is the smallest monotone sleeve that contains e.

2. Construct SLEEVE(Sy, s2) and the corresponding solid path P, by performing evert(é(s;)) and
then ezpose(d(sz)).

3. Insert edge e by performing part(P, e; Py, P;), so that there are new solid paths P, and P,
respectively in new regions ry and rj.

4. For each of the (up to three) solid paths previously pointing to the head of P, make it point
to the head of P; if it lies in rq, and to the head of P, if it lies in rg; similarly for the solid
paths previously pointing to the tail of P. Note that P, and P, have the same orientation as
P.

17

5. Create a new dynamic tree A(ry) for r1, by putting the root at the end of P, that is closer
to vy (which does not change the direction of P), then performing operation conceal(P);
similarly create a new dynamic tree A(ry). Note that the conceal operations readily splice
the solid paths pointing to the heads and tails of P, and of P; if necessary.

We analyze the time complexity of the above operation. Steps 1, 3 and 4 take O(1) time, and
the other steps globally involve a fixed number of evert, expose and conceal operations, so that
the total time required for updating the double-thread data structure is O(log® m).

Operation REMOVEEDGE(€, vy, vg,71,72;7) is the inverse operation of INSERTEDGE. We first
evert v; and then expose v in both A(rq) and A(rg), pair the two solid paths into one, and conceal
it. This can also be done in O(log? m) time.

Operation INSERTVERTEX (v, €; €1, €3) is performed as follows. We insert v with charge(v) =1
into lthread(P) and rthread(P’) for some solid paths P and P’ of different regions r and r’, where
both lthread(P) and rthread(P’) contain two endpoints vy and vy of e. In dynamic tree A(r), we
perform expose on the one of vy and vy that is farther from the root to obtain a solid path, and
then perform conceal on this path; in A(r") we perform exactly the same operations. It is easy
to see that operation INSERTVERTEX is executed in O(log? m) time. Operation REMOVEVERTEX is
the inverse operation of INSERTVERTEX, and can be completed within the same time bound.

2.4 Shortest Path Queries

In this section we illustrate how the normalization data structure can be modified, by appending
secondary data structures collectively called hull structure, to answer the following queries:

PATHLENGTH(q1, ¢2,7): Return the length of a shortest path inside region r between query points
q1 and ¢s.

PATH(q1, q2,7): Return the shortest path inside region r between query points ¢; and ¢z as a chain
of segments.

First, by point location (see Section 2.5) we can check whether ¢; and ¢z belong to r. Note that
we need to specify within which region the shortest path is sought to avoid ambiguities when both
¢1 and g9 belong to edges of the map. We now show that the above queries can be supported in
worst-case time O (log® n) and O(log® n+ k), respectively, where k is the number of segments in the
shortest path reported by PATH.

The notion of hourglass is central to our current problem. We adopt the terminology proposed
by Guibas and Hershberger [63].

Counsider two nonintersecting diagonals s; = (a1, b1) and sy = (ag, bg) of r, where the endpoints
have been named so that the counterclockwise cyclic sequence of points in the boundary of r
includes the subsequence (a1, ag, bz, b1). The hourglass of s; and sz, denoted HOURGLASS(s1, s3), I8
the subregion of r formed by the union of all the shortest paths PATH(q1, g2, 7) with ¢; € s; and
q2 € sy (see Fig. 2.8.b). It is known that the boundary of HOURGLASS(sy, s3) is the concatenation
of sy, PATH(ay, ag, 1), sz, and PATH(bg, b1, 7). Let a be the subchain of r counterclockwise from a,
to ag, and define § similarly for b3 and b;. The hourglass has one of the following special structures
(as analyzed by [63]):

Open hourglass: If the convex hulls inside r of @ and do not intersect, then PATH(ay, ag,r) is the
convex hull of the subchain of « clockwise from a; to ag, and similarly for PATH(bg, by, 7).

Closed hourglass: If the convex hulls of o and f intersect, then there exist vertices p; and p
of aU f such that PATH(ay, az,) N PATH(by, by,) = PATH(p1,pa, 7). Without loss of generality,

18

assume that p; is in @. Then PATH(aq,p1,r) is the convex hull inside r of the subchain of o from
ay to py, while PATH(by, py,) is the union of segment (py,p}) and the convex hull inside r of the
subchain of § from b; to p), where p} is the vertex of 5 closer to by on the two tangents from p,
to 3. Similar arguments apply to pa. The union of PATH(a;, p;,) and PATH(b;, p;,r) (i =1 or 2) is
called a funnel [76]. Vertices p; and p, are called the apices of the hourglass, and the path between
them the string of the hourglass (see Fig. 2.8.b).

If we represent an hourglass by its string and the (two to four) convex chains forming the
rest of its boundary, and for each polygonal chain represented we also store its length, then
given HOURGLASS(S1, S2), it is possible to compute PATHLENGTH(¢1, g2, 7) in O(logn) time for any
two points ¢; € s; and ¢2 € sy by means of O(1) common tangent computations. Also, given
HOURGLASS(S1, S2) and HOURGLASS(sg, s3) in r, with s; and s3 on opposite sides of the line con-
taining sq, it is possible to compute HOURGLASS(s1, s3) in time O(logn) by means of O(1) common
tangent computations and O(1) split and join operations on the chains forming the two hourglasses.

We now consider the modifications of the normalization data structure that enable the support
of the given path queries. As we shall see, only three items are needed, i.e.:

(i) The choice of an appropriate implementation of the trees ltree and rtree introduced in Sec-
tion 2.3.2;

(i) The appending of secondary data structures (collectively called “hull structure”) to the nodes
of ltree’s and rtree’s. The hull structure stores at the nodes of ltree’s and rtree’s the hourglasses
of the corresponding sleeves; it establishes an implicit correspondence between the two chains of a
monotone sleeve, allowing both efficient access to the hourglass of the sleeve, and fast pairing or
parting of the two chains as required by edge insertion or deletion;

(iii) A separate BB[a]-tree V (called Y-tree) that determines a hierarchical partition of the plane
into horizontal strips, according to which [tree’s and rtree’s are implemented.

We first describe the adopted representation of polygonal chains. A concatenable queue, called
chain tree, will be used to represent a polygonal chain . The chain tree T for ~ is a balanced tree
and has inorder thread pointers. Each node p of T' corresponds to a subchain v, of v and stores
the endpoints of v,, the common point of the subchains of the children of v,, and the length of ~,,.
It should be clear that this information can be updated in O(1) time per elementary join or split,
so that splitting or splicing two chain trees takes logarithmic time. With this representation, it is
possible to find the two tangents from a point to a convex chain and the four common tangents
between two convex chains in logarithmic time [93].

We now give the details of our representation of hourglasses. An open hourglass is represented
by storing its two convex chains into chain trees. A closed hourglass is represented by storing
into separate substructures the four convex chains forming the funnels, and the string between the
apices. The convex chains of the funnels and the string are each stored into a chain tree.

Without loss of generality we assume that the degree of each vertex of M is at most three. This
is not restrictive since we can expand a vertex v with degree d > 3 into a chain of degree-3 vertices
connected by edges of infinitesimal length. Since the sum of the degrees of all vertices of M is
O(n), the total number of vertices after the expansion is still O(n). Every update operation in the
original map M can be simulated with O(1) operations in the modified map with bounded-degree
vertices.

We consider the ordered sequence Y of the y-coordinates of the vertices of M, and establish
a one-to-one correspondence between Y and the leaves of a BB[a]-tree), called Y-tree, which is
added as a separate tree into the data structure. Tree) determines a hierarchical partition of
the plane into horizontal strips according to the well-known segment-tree scheme. Each node of

19

Y corresponds to a canonical interval of y-coordinates. A vertical interval (y/,y"”) with ¢/, y" € Y
is uniquely partitioned into O(logn) canonical intervals, called the fragments of (y',y"), and their
associated nodes in Y are called the allocation nodes of (y',y"). We extend this terminology to any
geometric entity that is uniquely associated with a vertical interval, such as an edge, a monotone
chain, or a monotone sleeve.

We now introduce the useful notion of “pruned tree”. A pruned tree of a rooted tree T is a
tree S that can be obtained from T by removing from it the subtrees rooted at a selected subset
of its nodes. Pruned trees of a balanced tree T support the full repertory of concatenable queue
operations. Each operation takes O(logn) time and is performed by means of O(logn) elementary
joins and splits between pruned trees whose roots are associated with sibling nodes in 7. A sequence
I of k consecutive intervals with endpoints in Y will be stored in a pruned subtree of), whose
leaves are the allocation nodes of the intervals of I, and whose internal nodes are the ancestors of
such leaves. It is easy to verify that the pruned tree associated with I has O(klogn) nodes and
O(log n) height.

Now, we show how to modify the normalization structure so that hourglasses can be dynamically
maintained (see Fig. 2.8). We denote with @ a maximal monotone subpath of a solid path P and
specify the implementation of ltree(Q) and rtree(Q)). We use pruned trees augmented with chain-
trees as secondary structures. Our scheme uses ideas from [90] and [63].

o Trees ltree(Q)) and riree(Q)) are implemented by means of pruned trees with respect to .

e Let u be a node of liree(Q)) (nodes of riree(Q)) are handled identically) and v the parent
of p. Node p has a pointer to the corresponding node y of Y. Also, if p is not a leaf,
then we establish a back pointer from y to p. We do not set up back pointers from y to
leaves of ltree(Q) (or of rtree(Q))) in order to obtain efficient updates, as we shall see later.
Consider the subpath @' of @) associated with the subtree of ltree(Q)) rooted at u. We denote
with SLEEVE (i) the sleeve of @', with s; and sy the splitters that delimit SLEEVE(p), with
HOURGLASS(p) the hourglass of s; and sy (namely, HOURGLASS(s1, S2)), and with CHAIN(u)
the “left chain” of SLEEVE(u), i.e., the chain formed by the edge-fragments stored at the
leaves of the subtree of ltree(Q) rooted at .

We distinguish several subcases:

— If p is a leaf of ltree(Q)), then p stores the corresponding edge fragment.

— If HOURGLASS(u) is open and HOURGLASS(v) is closed, then u stores in a secondary
data structure the right convex hull of CHAIN(u).

— If both HOURGLASS(;) and HOURGLASS(v) are open, then p stores in a secondary data
structure only the endpoints of CHAIN(x) and the portion of the right hull of cHAIN(u)
that is not stored at an ancestor of p.

— If HOURGLASS(p) is closed and p is the root of liree(Q), then u stores in secondary data
structure the (up to five) components of HOURGLASS(u).

— If HOURGLASS(p) is closed and g is not the root, then u stores the apices and the length
of the string of HOURGLASS(u), plus the subchains of the funnels of HOURGLASS(u) that
are not stored at the ancestors of p.

e The upper levels (see Section 2.3.2) of thread trees [thread(P) and rthread(P) are essentially
identical (except for the couplers). Also, an internal node g in the upper level of lthread(P)
stores the length and the endpoints of the string of HOURGLASS(12). The corresponding node
of rthread(P) stores exactly the same information.

Lemma 2.8 The space requirement of the hull structure is O(nlogn).

20

(12,14,15")

18212320 (08911
18.8,9,11))/ (18:21.23.26)

(18,21,23,26)

(5.6 (4,’5’65) E (17,18)
(3,5) .
(15',16) (3.4)2 F (15',16,17)
(12,14,16)

(1’2’3)5 E (12,14,15")

Figure 2.8: Example of representation of hourglasses in the nodes of ltree(Q) and riree(Q) of a
monotone path Q. (b) The sleeve of @ (directed from left to right): the parallel lines drawn on it
represent set Y'; the points on the sleeve with labels of the type ¢ delimit fragments of the same
edge; the hourglass between the extreme splitters of the sleeve is shown grey-filled. (a) Pruned-
tree ltree(Q)): the nodes of ltree(Q)) are those drawn with thick lines, while the nodes drawn with
thin lines denote the subtrees of J pruned away to construct ltree(Q); the grey-filled nodes are
associated with closed sleeves, and the white-filled nodes are associated with open sleeves. Next
to each white-filled node y we show the subchain of HOURGLASS(ut) stored at p. (c¢) Pruned-tree
rtree(Q)) (similar comments as in (a) apply). (d) Hourglasses of the grey-filled nodes and of their
children. The subchains stored at each node are labeled and shown with thick lines.

(1,2,16)

21

Proof: We only need to determine the space used by the secondary structures (the chain-trees)
that augment the ltree’s and rtree’s. Consider the set S of all segments s such that s is either an
edge-fragment or the tangent segment in the hourglass of a node in ltree or rtree. We claim that
the size of S is O(nlogn). By standard segment-tree arguments, the number of edge-fragments in
Sis O(nlogn). For the tangent segments, consider the hourglasses HOURGLASS (), HOURGLASS (u)
and HOURGLASS(p") of a node g and its children g’ and p”. Note that SLEEVE(y') and SLEEVE(p”)
share a common splitter, say sg, and the other splitters s; of SLEEVE(x) and s3 of SLEEVE(u")
lie on opposite sides of sy. It follows that HOURGLASS(;) = HOURGLASS(S1, S3) is obtained from
HOURGLASS(f/) = HOURGLASS(s1, 83) and HOURGLASS (1) = HOURGLASS(sg, s3) by O(1) common
tangent computations, and thus each node y contains O(1) tangent segments. Again, by segment-
tree arguments, the total number of nodes in ltree’s and rtree’s is O(nlogn), hence the total
number of tangent segments in S is O(nlogn). Also, each segment of S is stored O(1) times in
the data structure, since it can have representatives in an allocation node (for an edge fragment),
in the the highest open hourglass, and in the highest monotone hourglass, and there may be two
such nodes for each segment (recall that edges have two “sides”, and the corresponding nodes
in the paired ltree and rtree may have duplicate information). We conclude that the secondary
structures are a collection of balanced trees with a total of O(nlogn) nodes, and hence use total
space O(nlogn). O
Query operations PATHLENGTH(q1, g2,) and PATH(q1, g2,) are performed as follows:

1. Find the trapezoids 71 and 75 of the trapezoidal decomposition of r containing ¢; and ¢z, using
the point-location machinery of Section 2.5. Let s; and sy be the splitters on the boundary
of 71 and 73, such that ¢; and ¢ are on opposite sides of SLEEVE(sq, s3).

2. Create the solid path P for SLEEVE(sy, s2) (P is the path between edges 6(s1) and 6(sy) of
d(r)), by means of evert(d(s1)) and ezpose(d(sz)). The secondary structure stored at the root
of lthread(P) (or rthread(P)) yields a representation of HOURGLASS(s1, S2).

Given the representation of HOURGLASS(s1, s2), after computing in time O(logn) the tangents
from ¢; and ¢y to the appropriate funnels, we can answer PATHLENGTH (g1, g2, 7) and PATH(q1, 2, T)
in time O(1) and O(k), respectively (where k is the number of edges of the shortest path reported).
Finally, we conceal the path exposed in step 2 to satisfy the weight invariant.

Regarding updates, we have (see the example in Fig. 2.9):

Lemma 2.9 An elementary split or join of two thread trees in the normalization structure aug-
mented with the hull structure takes time O(logn).

Proof: After an elementary split or join of two solid thread trees, we need to update only the
secondary data structures of their roots. Since such data structures represent the hourglasses of
the corresponding sleeves, they can be updated in O(logn) time (see Fig. 2.9). Note that for a
nonmonotone solid path the updates are limited to its leftmost or rightmost monotone subpath.
For this reason it is sufficient to store only the length of the string in the nodes of the upper levels
of the lthread and rthread trees. |

As a consequence, splitting a solid path or joining two solid paths takes time O(log2 n). Note
that parting or pairing ltree(Q)) and riree(Q)) of a monotone path @ (because of an edge insertion or
deletion in the corresponding sleeve) takes O(1) time. The lemma below follows from Lemmas 2.6
and 2.9.

Lemma 2.10 Queries PATHLENGTH(q1, q2,7) and PATH(q1, q2,7) are performed in time O(log® n)
and O(log3 n + k), respectively, where k is the number of edges of the shortest path reported.

22

a,=0'sgta"

/N

a2

Figure 2.9: Example of update of the secondary structures in an elementary join of two solid
paths. (a) Geometric construction of the hourglass. (b) Construction of the representation of the
root hourglass by means of split and join operations on the chain-trees in the representation of the
hourglasses of the children nodes.

Now, we discuss how operation INSERTVERTEX (v, €; €1, €3) affects the new data structure. First,
we insert a new node y(v) into Y. Let p be one of the two nodes in the ltree and rtree that stores
the fragment of edge e where v is inserted, and let y be the corresponding node of). Before the
insertion of v, there is a pointer from p to y but no back pointer from y to p, since p is a leaf
of a pruned tree. After the insertion of v, the fragment of e stored in p is further partitioned
into O(logn) fragments (but the total number of fragments of e is still O(logn)) according to the
subtree of Y rooted at y (y(v) has already been inserted into this subtree); we allocate these edge
fragments into a new tree T, expand leaf u to T},, establish a pointer from y to p, and rename all
fragments of e to e; or ey appropriately.

The insertion of y(v) into) may cause rebalancing operations in) carried out by means of
rotations. A rotation between a node 3’ and its child y” implies that horizontal cuts at y” now
take priority over horizontal cuts at y’. It is easy to see that the rotation only affects the subtrees
of the ltree’s and rtree’s rooted at the nodes pointed to by 3’. We rebuild such subtrees from
scratch, which can be done in time proportional to their size. Note that prior to the rotation, a
leaf p of Itree or rtree corresponding to 3’ stores an edge fragment that spans the canonical vertical

23

interval I of y', and thus p is not affected by the rotation (except that after the rotation we have
to redirect the original pointer of u to ¥’ so that it now points to 3", since 3" now corresponds to
I). Since there may be a large number of such leaves p that do not require rebuilding, we do not
establish a back pointer from y’ to leaf y in our data structure (as we have already seen), so that
inefficient checking for the necessity of rebuilding is avoided. Also, the redirection of all pointers
of leaves u from y’ to y” can be done efficiently when we rotate y’ with y”: we switch the contents
of the physical nodes y' and y” to interchange the roles of the physical nodes y" and y” (and then
carry out the rotation appropriately by O(1) elementary splits and joins), so that all these pointers
are effectively redirected, though no actual changes are made to the pointers. Now we show that
the rebuilding of the subtrees of ltree’s and rtree’s caused by a rotation in) can be performed
efficiently.

Lemma 2.11 Let y be a node of Y whose subtree has £ leaves. The subtrees of ltree’s and rtree’s
with the hull structure appended whose roots are pointed to by node y have total size O(£logt), and
can be built in time O(llogl).

Proof: The subtree of) rooted at y has exactly 2¢ — 1 nodes. Thus there are O () vertices inside
the canonical vertical interval I of node y. The leaves of the subtree rooted at a node pointed by y
store the edge fragments that are inside I but do not span I. Hence, the edges contributing to such
fragments must be incident on some vertex inside I. Since each vertex has bounded degree, there
are O({) such edges. Also, since the subtree of Y has height O(log/), each such edge has O(log?)
fragments inside I. We conclude that the total number of leaves in the subtrees rooted at node
pointed by y is O({log (), and hence their total size is also O({logt). O

By the properties of BB[a]-trees, we derive the following lemma.

Lemma 2.12 The amortized rebalancing time of the Y-tree Y in a sequence of update operations

is O(log? n).
We conclude:

Theorem 2.3 Shortest path queries PATHLENGTH (q1, g2, 7) and PATH(q1, g2,) in an n-vertex con-
nected planar map can be performed in worst-case time O(log®n) and O(log®n + k), respectively
(where k is the number of edges of the shortest path reported), using a fully dynamic data structure
that uses space O(nlogn) and supports updates of the map in time O(log® n) (amortized for vertez
updates).

Remark. In a concrete situation where vertices are a priori restricted to a fixed set of ordinates,
tree) is static; if we then implement the trees ltree and rtree by means of contracted binary
trees [96] of depth < log|Y| (whose maintenance requires no rotation), then the update times
become O(log® nlog |Y|), in the worst case.

The following are two additional types of queries that can be supported by the described data
structure without any modification:

TRAILLENGTH (q1, qz|€1, ..., €¢): allowing edges e1,...,e; to be deleted, are points ¢; and gy reachable
to each other? if so, then return the length of the shortest path.

TRAIL(q1, g2|€1, ..., €¢): allowing edges ey,...,e; to be deleted, are points ¢; and g reachable to each
other? if so, then return the shortest path.

An immediate application is that viewing the edges of the map as walls, we are allowed to put
doors on edges eq,...,e4; can a point-like robot at position ¢ reach position g7 If so, then report
the shortest path or its length.

24

Clearly, by using REMOVEEDGE, point-location query (see Section 2.5), PATHLENGTH Or PATH,
and INSERTEDGE operations, queries TRAILLENGTH and TRAIL can be answered in worst-case time
O((£+ 1)log®>n) and O((£ + 1)log®>n + k), respectively, where k is the number of edges of the
shortest path reported.

2.5 Point Location Queries

In this section we consider the problem of answering point-location queries:

LOCATE(q): Find the region containing query point ¢. If ¢ is on an vertex or edge, then return that
vertex or edge.

Our dynamic point-location data structure is inspired by the static trapezoid method [92] and
its dynamic version for monotone maps [28]. It uses the normalization and hull structures as the
underpinning of update operations. Queries are instead performed in a location structure, a binary
tree called trapezoid tree.

The trapezoid tree defines a binary partition of the plane obtained by means of vertical and
horizontal cuts. It differs in many substantial aspects from the trapezoid trees used in [28, 92], the
most striking difference being that it is not balanced.

The trapezoid tree 7 for map M is based on the Y-tree Y (see Section 2.4) and on the normaliza-
tion of M as reflected by the normalization structure (see Section 2.3). We view the unnormalized
map M as a trapezoid with its sides at infinity. If a trapezoid 7 contains more than a single
edge fragment in its interior, we recursively decompose it into trapezoids whose vertical spans are
canonical vertical intervals, according to the following rules (see Fig. 2.10):

Vertical cut: If T is a coupler or is vertically spanned by a monotone subpath) and the hourglass
H of SLEEVE(Q) is open, we decompose T by one of the supporting tangents ¢ of H.

Horizontal cut: If no vertical cut is possible, then we decompose 7 by cutting it along the horizontal
line at the y-coordinate associated with the (unique) allocation node of 7 in Y.

Note that a vertical cut always takes priority over a horizontal cut. If more vertical cuts are
possible, their order is arbitrary. We represent the above decomposition of M by means of a binary
tree T (see Fig. 2.10). Each node of T is associated with a trapezoid t of the decomposition and
the partitioning object (a tangent or a horizontal line) of 7, and stores the representation of such
object. Nodes of T are classified into three categories (and the association): a ()-node (a vertical
cut), a V-node (a horizontal cut), and a O-node (a terminal trapezoid of the decomposition and its
edge fragment).

The above decomposition process is closely related to the one induced by the segment-tree. In
particular, the leaves of T are in one-to-one correspondence with the fragments of the edges of M,
so that tree 7 has O(nlogn) leaves. Since each node stores a constant amount of information, we
have that the space requirement of the trapezoid tree 7T is O(nlogn).

It is clear that a point location query LOCATE(g) can be performed by traversing a root-to-leaf
path in 7, where at each internal node u we branch left or right depending on the discrimination
of the query point ¢ with respect to the partitioning object stored at p. Indeed, the leaf reached
identifies an edge that is first hit by a horizontal ray through ¢. Since we did not impose any
balance requirement on 7, the query time could be linear in the worst-case.

To speed-up queries, we implement 7 as a dynamic tree [104], i.e., 7 is decomposed into solid
paths (which should not be confused with the solid paths in the normalization structure), connected
by dashed arcs (see Fig. 2.11). Each solid path is associated with a path tree, implemented as a

25

Figure 2.10: Example of the construction of trapezoid tree T for map M. (a) Recursive decompo-
sition of M by vertical and horizontal cuts. (b) Trapezoid tree T associated with the decomposition
in part (a).

biased search tree [10]. Note that the sequence of nodes of a solid path of 7 identifies a sequence of
nested trapezoids. For example, in path tree T'(P;) of Fig. 2.11(c), leaf #; identifies the trapezoid
of the entire map M, and leaf ¢, identifies the trapezoid whose right side is at infinity and whose
other sides are t5,1; and /3. A point-location query starts at the root of the path tree of the topmost
solid path of 7 (e.g., the root of T(P;) in Fig. 2.11(c)). At a given internal node 7 of a path tree
we consider the rightmost node ¢ in the left subtree of 7 (readily available given thread pointers).
We discriminate ¢ against the trapezoid 7 of ¢ and go to the left or right child of 1 according to
whether ¢ is inside or outside 7 (recall that a solid path is stored bottom-to-top in the left-to-right
leaves of its path tree). When we reach a leaf of a path tree (which represents a node p of T), we
always exit on a dashed arc, and we always know the exit except for the case of the last node of the
solid path, in which case we go to its left or right child by discriminating ¢ against the partitioning
object of p. For example, in Fig. 2.11(c), when we reach leaf I; of T(P;), we know that the next
node to visit is the root of T'(P;), since that is the only exit; when we reach leaf I3 of T'(F%), we
discriminate ¢ with /3 and move down right to T'(Ps) by the fact that ¢ is above I3. By this process,
we will finally reach a leaf of a path tree with no exit (representing a leaf of 7), which identifies an
edge of the region containing g.
Using biased search trees [10] as the standard implementation of path trees, we have

Lemma 2.13 The time complexity for a point location query is O(logn).

Proof: Let (v1, 1), -, (ve, jte) be the sequence of dashed arcs traversed by the query algorithm,
with v; the parent of p;. (Note that yu is the leaf reached by the query algorithm.) Also, let

26

Figure 2.11: Representing trapezoid tree 7 by a dynamic tree. (a) The same decomposition of
M as in Fig. 2.10(a). (b) Decomposing trapezoid tree T of Fig. 2.10(b) into solid paths Py, Py, - - -
(¢) Actual data structure representing 7, where T'(F;) is the path tree for solid path P; in 7.
The left-to-right leaves of T'(P;) represent bottom-to-top nodes of P;, which in turn correspond to
smaller-to-bigger nested trapezoids.

tto be the root of 7. Since the path trees are implemented as biased search trees, we have that
the number of nodes visited in the solid path of v; is at most log(weight(u;—1)/weight(v;)) + 2.
Hence, the time complexity of a point location query is O(Y_¢_, log(weight(ui_1)/weight(v;))). Since
weight(p;) < weight(v;), the above sum telescopes, and we have that a point location query takes
time O(logn). O

To perform update operations, we establish bidirectional links between the trapezoid tree and
the normalization structure. Let p be a node of 7. We have

e If 1 is a (O-node, let Q' be the subpath of a monotone path @ associated with the vertical cut
at 1t (i.e., the sleeve of @ spans the trapezoid of 1 and has an open hourglass). We establish
pointers between g and the nodes of ltree(Q) and riree(Q)) associated with Q.

e If 1 is a V-node, let Q' and R’ be subpaths of monotone paths @ and R such that Q" and R’
span the leftmost and rightmost regions in the trapezoid of u. We establish pointers between
p and the nodes of liree(R) and rtree(Q)) associated with R’ and @', respectively. Also, we
establish a back pointer from the allocation node y of g in Y to p.

e If i is a O-node, we establish pointers between p and the two nodes in the normalization
structure associated with the same edge fragment.

Note that every node of a thread tree associated with an open hourglass is pointed to by exactly
two nodes of 7.

27

Now, we discuss how update operations affect the trapezoid tree. Since the decomposition
described by 7 is determined by the monotone paths, we update the trapezoid tree whenever
monotone paths are changed in the normalization structure. We only need to consider the effects
on the trapezoid tree of elementary splits, joins, partings, and pairings of monotone paths. Each
such elementary operation in the normalization structure corresponds to performing O(1) link and
cut operations in the trapezoid tree. Details are shown in Figs. 2.12-2.13. Link and cut operations
are performed in O(logn) time by standard dynamic tree algorithms. Regarding vertex insertions,
a rotation at a node y in the Y-tree J caused by a vertex update is handled by rebuilding the
subtrees of T whose roots are V-nodes pointed by y. With an argument analogous to the one of
Lemma 2.11, we can prove the following lemma.

Figure 2.12: Update of the trapezoid tree in consequence of an elementary split of a monotone
path in the normalization structure.

Lemma 2.14 Let y be a node of Y whose subtree has £ leaves. Then the subtrees of T whose roots
are pointed to by y have total size O(llogt), and can be built in time O({logl).

Hence the amortized cost of rebalancing) in a sequence of updates is O(log? n). We conclude

Theorem 2.4 Pont location queries LOCATE(q) in an n-verter connected planar map can be per-
formed in worst-case time O(logn) using a fully dynamic data structure that uses space O(nlogn)
and supports updates of the map in time O(log®n) (amortized for vertez updates).

Note that query LOCATE(q) is used in the update of the hull structure.

2.6 Ray Shooting Queries

In this section we consider the problem of performing ray-shooting queries of the type:

28

Figure 2.13: Update of the trapezoid tree caused by parting a monotone path in the normalization
structure because of an edge insertion.

SHOOT(q,d): Find the first vertex or edge hit by a query ray (q,d) in direction d originating at
point q.

We show that the dynamic point location data structure in the previous section also supports
ray-shooting queries in worst-case time O(log®n). Without loss of generality, assume that (g, d) is
oriented upwards. The ray-shooting algorithm is as follows:

First, we perform LOCATE(g) to determine the region r containing ¢. If ¢ lies on an a vertex or
edge, an infinitesimal perturbation of ¢ in direction d enables us to find the first region r entered
by the ray. Query LOCATE(q) also identifies the monotone sleeve SLEEVE(Q) of r containing ¢ and
the splitter s; of SLEEVE(Q) immediately below g. We find the first intersection ¢’ of (g, d) with
the boundary of SLEEVE(Q). If ¢/ is on a vertex or edge of r, then we report ¢’ and stop; else (¢’ is
on a lid of SLEEVE(Q)) we apply the algorithm recursively to the new ray (¢, d).

We find the first intersection ¢’ of (¢, d) with the boundary of SLEEVE(Q) by the process below:

1. Find the topmost splitter sy in SLEEVE(Q) such that HOURGLASS(sy, s2) is open, by means
of O(logn) elementary splits and joins of subpaths of @ that yield a new monotone path R
such that SLEEVE(sy, s3) = SLEEVE(R). Note that the boundary of SLEEVE(R) is part of the
boundary of SLEEVE(Q)) except for possibly s; and sy, where sy is part of the boundary of
SLEEVE(Q) if and only if sy is the top lid of SLEEVE(Q).

2. Find the first intersection p of (¢, d) with the boundary of SLEEVE(R).

3. If pis not on sg, or if p is on sy but sy is the top lid of SLEEVE(Q), then p is on the boundary
of SLEEVE(Q) and thus the desired intersection ¢’. Return p and stop.

4. Else (pis on sy and sy is not the top lid of SLEEVE(Q)), set sy := sz, ¢ := p, and go to Step 1.
Note that this situation can occur at most twice, since s, is the topmost splitter above s; such
that HOURGLASS(s1, s2) is open, and any straight line can completely go through at most one

29

such hourglass, with the bottom and top portions of the line possibly in the two (below and
above) adjacent hourglasses (see Fig. 2.14).

top lid of /
SLEEVH Q)

SLEeVH Q)

bottom side of

SLEeVH Q)

Figure 2.14: The situation in step 4 of the process for computing ¢’ can occur at most twice. For
i =1,2,3, s;41 is the topmost splitter above s; such that HOURGLASS(s;, s;+1) is open. As shown,
the situation of step 4 occurrs twice when (g, d) hits sy and s3, respectively. Note that (¢, d) can not
reach s4, or otherwise HOURGLASS(s3, s4) would be open and s3 would not be the topmost splitter
above sy such that HOURGLASS(sz, s3) is open.

In step 2, the first intersection p of (q,d) with the boundary of SLEEVE(R) can be found by
a binary search in the trees ltree(R) and rtree(R) as follows: at a current node g with children
p' and p”, where cHAIN(u') is below cHAIN(u"), we determine the intersection of (¢, d) with the
convex hull of cHAIN(u). If the intersection is on a real edge or on a lid then we are done; else it
is on a (fictitious) convex hull edge: we then compute the complete convex hulls of cHAIN(¢') and
CHAIN(u"), and repeat the process on u' or on p” depending on whether or not (g, d) intersects
with the convex hull of cHAIN(y'), respectively.

The computation of point ¢’ can be done in O(log? n) time: step 1 performs O(log n) elementary
joins and splits of solid subpaths of @, each in O(logn) time by Lemma 2.9; step 2 takes O(log? n)
time, with O(logn) time on each node visited during the binary search; finally, the steps are
executed at most three times by step 4. The number of recursive calls to compute a sequence of
such points ¢’ is O(logn) since the query ray intersects O(logn) lids by Corollary 2.1. At the
end, we conceal the path of A(r) traversed by the query ray to restore the weight invariant. We
conclude with the following theorem.

Theorem 2.5 Ray-shooting queries SHOOT(q, d) in an n-vertex connected planar map can be per-
formed in worst-case time O(log3 n) using a fully dynamic data structure that uses space O(nlogn)

30

and supports updates of the map in time O(log®n) (amortized for vertez updates).

Theorem 2.5 also provides the capability of checking the validity of an edge insertion, i.e.,
whether the new edge does not intersect the current edges of the map. Moreover, as a corollary,
we can perform stabbing queries, namely, determine the k edges of the map intersected by a query

segment, in time O((k + 1) log® n).

31

Chapter 3

Optimal Shortest Path and
Minimum-Link Path Queries

3.1 Introduction

In this chapter, we present efficient algorithms for shortest-path and minimum-link-path queries
between two convex polygons inside a simple polygon, which acts as an obstacle to be avoided. We
give efficient techniques for both the static and dynamic versions of the problem.

Let Ry and R be two convex polygons with a total of h vertices that lie inside a simple polygon
P with n vertices. The (geodesic) shortest path mg (R, Rz) is the polygonal chain with the shortest
length among all polygonal chains joining a point of Ry and a point of Ry without crossing edges
of P. A minimum-link path 77 (R1, Rz2) is a polygonal chain with the minimum number of edges
(called links) among all polygonal chains joining a point of Ry and a point of Ry without crossing
edges of P. The number of links in 77, (Ry, Ry) is called the link distance dr, (R, R3).

The related problem of computing the length of the shortest path between two polygons Ry
and Ry without obstacle P has been extensively studied; this problem is also known as finding the
separation of the two polygons [45], denoted by o(Ry, Rz). If both Ry and R; are convex their
separation can be computed in O(logh) time [31, 48, 20, 45]; if only one of them is convex an
O(h)-time algorithm is given in [31]; if neither is convex, an optimal algorithm is recently given by
Amato [3], who improves the previous result of Kirkpatrick [71] from O(hlogh) to O(h).

Although there has been a lot of work on the separation problem, the more general shortest-path
problem for two objects in the presence of obstacle P has been previously studied only for the simple
case when the objects are points, for which there exist efficient static [63] and dynamic [26, 59]
solutions. The static technique of [63] supports two-point shortest-path queries in optimal O(logn)
time (plus O(k) if the k edges of the path are reported), employing a data structure that uses
O(n) space and can be built in linear time. The dynamic technique of [26], as already presented
in Chapter 2, performs shortest-path queries between two points in the same region of a connected
planar map M with n vertices in O(log®n) time (plus O(k) to report the k& edges of the path),
using a data structure with O(nlogn) space that can support updates (insertions and deletions of
edges and vertices) of M each in O(log®n) time. The very recent result of [59] improves the query
and update times to O(log® n), with space complexity also improved to O(n).

The minimum-link path problem between two points has been extensively studied. In many
applications, such as robotics, motion planning, VLSI and computer vision, the link distance often
provides a more natural measure of path complexity than the Euclidean distance [67, 83, 100,
107, 109]. For example, in a robot system, a straight-line navigation is often much cheaper than

32

rotation, thus it is desirable to minimize the number of turns in path planning [100, 109]. Also, in
graph drawing, it is often desirable to minimize the number of bends [105, 110].

All previously known techniques for the minimum-link path problem are restricted to the static
environment, where updates to the problem instance are not allowed. The method of [107] computes
a minimum-link path between two fized points inside a simple polygon in linear time. In [109], a
scheme based on window partition can answer link distance queries from a fized source in O(logn)
time, after O(n) time preprocessing. The best known results are due to Arkin, Mitchell and Suri [7].
Their data structure uses O(n?) space and preprocessing time, and supports minimum-link-path
queries between two points and between two segments in optimal O(logn) time (plus O(k) if the
k links are reported). Their technique can also perform minimum-link-path queries between two
convex polygons, however, in non-optimal O(loghlogn) time. Also, efficient parallel algorithms
are given in [18].

There are other results on the variations of the minimum-link-path problem. Efficient algo-
rithms for link diameter and link center are given in [44, 56, 78, 67, 85, 84, 108]. A minimum-link
path between two fixed points in a multiply connected polygon can be computed efficiently [83].
Sequential and parallel algorithms for rectilinear link distance are respectively given by de Berg [39]
and Lingas et al. [79]. De Berg et al. [40] study the problem of finding a shortest rectilinear path
among rectilinear obstacles. Mitchell et al. [82] consider the problem of finding a shortest path with
at most K links between two query points inside a simple polygon, where K is an input parameter.

Our main results in this chapter are outlined as follows.

e Let P be a simple polygon with n vertices. There exists an optimal data structure that
supports shortest-path queries between two convex polygons with a total of h vertices inside
P in time O(logh + logn) (plus O(k) if the k links of the path are reported), using O(n)

space and preprocessing time; all bounds are worst-case.

o Let P be a simple polygon with n vertices. There exists a data structure that supports
minimum-link-path queries between two convex polygons with a total of h vertices inside P
in optimal time O(logh + logn) (plus O(k) if the k links of the path are reported), using
O(n?) space and preprocessing time; all bounds are worst-case.

e Let M be a connected planar map whose current number of vertices is n. Shortest-path and
minimum-link-path queries between two convex polygons with a total of h vertices that lie in
the same region of M can be performed in times O(log h +log? n) (plus O(k) to report the k
links of the path) and O(logh + klog? n), respectively, using a fully dynamic data structure
that uses O(n) space and supports insertions and deletions of vertices and edges of M each
in O(log”n) time; all bounds are worst-case.

The contributions of this chapter can be summarized as follows:

e We provide the first optimal data structure for shortest-path queries between two convex
polygons inside a simple polygon P that acts as an obstacle. No efficient data structure was
known before to support such queries. All previous techniques either consider the case where
P is not present or the case where the query objects are points.

e We provide the first data structure for minimum-link-path queries between two convex poly-
gons inside a simple polygon P in optimal O(logh+ logn) time. The previous best result [7]
has query time O(loghlogn) (and the same space and preprocessing time as ours).

e We provide the first fully dynamic data structure for shortest-path queries between two convex
polygons in the same region of a connected planar map M. No such data structure was known
before even for the static version.

e We provide the first fully dynamic data structure for minimum-link-path queries between two

33

convex polygons in the same region of a connected planar map M. No such data structure
was known before even for two-point queries.

We summarize the comparisions of our results with the previous ones in Tables 3.1-3.4.

H Static Shortest Paths ‘ Query Type ‘ Query ‘ Space ‘ Preprocessing H
Guibas- two query points logn * n * n *
Hershberger [63]

H This chapter ‘ two query convex polygons ‘ logh + logn * ‘ n * ‘ n * H
* optimal

Table 3.1 Results for static shortest-path queries.

H Dynamic Shortest Paths ‘ Query Type ‘ Query ‘ Space ‘ Update H
Chiang-Preparata- two query points log® n nlogn | log>n
Tamassia [26] (Chapter 2)

Goodrich-Tamassia [59] two query points log? n n * log? n

H This chapter ‘ two query convex polygons ‘ log b + log%n ‘ n * ‘ logZn H

* optimal

Table 3.2 Results for dynamic shortest-path queries.

H Static Min-Link Paths ‘ Query Type ‘ Query ‘ Space ‘ Preprocessing H
Suri [109] one fixed point and one log n * n * n *
query point
Arkin-Mitchell- two query points/segments logn * n’ n’
Suri [7] two query convex polygons log hlogn n> n>
H This chapter ‘ two query convex polygons ‘ log h 4+ logn * ‘ n3 ‘ n’ H

* optimal

Table 3.3 Results for static minimum-link-path queries.

We briefly outline our techniques. Given the available static techniques with optimal query
time for shortest paths and minimum-link paths between two points, our main task in performing
the two-polygon queries is to find two points p € Ry and ¢ € R such that their shortest path or
minimum-link path gives the desired path between R; and R3. As we shall see later, the notion of
geodesic hourglass between R; and Rj is central to our method. The geodesic hourglass is open if
Ry and Rs are mutually visible, and closed otherwise. As for shortest-path queries, the case where
Ry and R, are mutually visible is a basic case that, surprisingly, turns out to be nontrivial (the
complication comes from the fact that the shortest path in this case may still consist of more than
one link), and our solution makes use of interesting geometric properties. If Ry and Rj are not
visible, then the geodesic hourglass gives two points p; and p, that are respectively visible from
Ry and R; such that the shortest path between any point of Ry and any point of Ry must go
through p; and ps. Then the shortest path between R; and Rj is the union of the shortest paths
between R; and pp, between py and Ry (both are basic cases), and between two points p; and ps.
The geodesic hourglass also gives useful information for minimum-link-path queries. When it is

34

H Dynamic Min-Link Paths ‘ Query Type ‘ Query ‘ Space ‘ Update H
H This chapter ‘ two query convex polygons ‘ log h + klog? n ‘ n * ‘ log? n H

* optimal

Table 3.4 Results for dynamic minimum-link-path queries.

open, a minimum-link path is just a single segment; if it is closed, then it gives two edges such that
extending them to intersect Ry and Ry gives the desired points p and ¢ whose minimum-link path
is a minimum-link path 77, (R1, R3). However, it seems difficult to compute the geodesic hourglass
in optimal time. Interestingly, we can get around this difficulty by computing a pseudo hourglass
that gives all the information we need about the geodesic hourglass. We also extend these results
to the dynamic case, by giving the first dynamic method for minimum-link-path queries between
two points.

The rest of this chapter is organized as follows. In Section 3.2 we briefly review the basic
geometric notions used by our method. Section 3.3 shows how to perform shortest-path queries
in the static environment, in particular how to compute the pseudo hourglass and how to handle
the nontrivial basic case where two query polygons are mutually visible. Sections 3.4, 3.5 and 3.6
are devoted to dynamic shortest-path, static minimum-link-path, and dynamic minimum-link-path
queries, respectively.

3.2 Preliminaries

In this section we describe geometric notions needed in this chapter, some of which have already
been introduced in Section 2.2 and are further explored here. A connected planar map M is a
subdivision of the plane into polygonal regions whose underlying planar graph is connected. Thus
each region of M is a simple polygon P. A polygonal chain v is monotone if any horizontal line
intersects it in a single point or in a single interval or not at all. A simple polygon P is monotone if
its boundary consists of two monotone chains. A cusp of a polygon P is a vertex v whose interior
angle is greater than 7 and whose adjacent vertices are both strictly above (lower cusp) or strictly
below (upper cusp) v. If we draw from a cusp v of P two horizontal rays that terminate when they
first meet the edges of P, the resulting segments to the left and right of v are called left lid and
right lid of v, respectively. A polygon is monotone if and only if it has no cusps.

The notion of window partition was introduced in [109]. Given a point or a line segment s in
region P, let WP(s) denote the partition of P into maximally-connected subregions with the same
link distance from s; WP(s) is called the window partition of P with respect to s. Associated
with WP(s) is a set of windows, which are chords of P that serve as boundaries between adjacent
subregions of the partition.

Given two points p and ¢ that lie in the same region P of M (or in the same simple polygon
P), it is well known that their shortest path 7g(p, q) is unique and only turns at the vertices of
P. On the contrary, a minimum-link path is not unique and may turn at any point inside P.
Adopting the terminology of [109], we define the (unique) greedy minimum-link path 7r,(p, q) to be
the minimum-link path whose first and last links are respectively the extensions of the first and last
links of m¢(p, ¢), and whose other links are the extensions of the windows of W P(p). The number
of links in 77,(p, ¢) is then the link distance dz,(p, ¢). In the following we use the term “window” to
refer to both a window and its extension.

Given a shortest path g (p, q), an edge e € mg(p, ¢) is an inflection edge if its predecessor and
its successor lie on opposite sides of e. It is easily seen that an edge e € mg(p, ¢) is an inflection

35

edge if and only if it is an internal common tangent of the boundaries of P.

Given two convex polygons R; and R inside P, we say that Ry and Ry are mutually visible
if there exists a line [connecting Ry and Ry without crossing any edge of P; we call such line [a
visibility link between Ry and Ry. Now we define the left and right boundaries By, and Br of P with
respect to Ry and Ry when they are not mutually visible through a horizontal line. For i = 1,2,
let u; and d; be the highest and lowest vertices of R;, respectively. Without loss of generality, we
assume that y(u1) > y(uz) (otherwise we exchange the roles of Ry and Rjy). We choose ¢; € {u1,d;}
and ¢z € {ug,dz} such that (7) the subpolygon P’ of P delimited by both e; and ey contains both
Ry and Ry, where ¢; is a horizontal chord of P going through ¢;, i = 1,2, and (¢¢) among the four
shortest paths mg(uy, uz), 7q(u1, d2), 7g(di, uz) and w¢(dy, ds), 7G(q1, q2) has the largest number
of cusps (see Fig. 3.1). Now P’ is bounded by ey, €5 and two polygonal chains. We define By, and
Bpr as these two polygonal chains of P': By, is the one to the left of 7¢(q1,¢2) when we walk along
G (g1, q2) from ¢ to ¢1, and Bp is the one to the right (see Fig. 3.1). Clearly, any shortest path 7
between a point in Ry and a point in Ry can only touch the vertices of P on By, and Bp, and the
inflection edges of 7 are those edges that have one endpoint on By, and the other endpoint on Bp.

(@

Figure 3.1: Left and right boundaries By, and Br of P: (a) several choices of (¢, ¢q2) satisfy
condition (7¢) but only one satisfies (¢); (b) several choices of (g1, qz) satisfy condition () (e.g.,
(u1,dy) is also valid) but only one satisfies (i7); (c) neither (¢) nor (i¢) alone enforces a unique
choice of (g1, ¢2), but their conjunction does.

3.3 Static Shortest Path Queries

In this section we show how to compute the shortest path m¢(R1, R2) between two convex polygons
R, and Ry with a total of h vertices inside an n-vertex simple polygon P. The data structure of

36

Guibas and Hershberger [63] computes the shortest path 7g(p, ¢) between any two points p and
¢ inside P in O(logn) time, where in O(logn) time we get an implicit representation (a balanced
binary tree) and the length of mg(p,q), and using additional O(k) time to retrieve the & links
we get the actual path. Point-location queries can also be performed in O(logn) time. The data
structure uses O(n) space and can be built in O(n) time after triangulating P (again in O(n)
time by Chazelle’s linear-time triangulation algorithm [19]). We modify this data structure so that
associated with the implicit representation of a shortest path 7g, there are two balanced binary
trees respectively maintaining the inflection edges and the cusps on mg in their path order. The
balanced binary tree representing 7w and the two associated binary trees support split and splice
operations, so that we can extract a portion of 7g in logarithmic time.

With this data structure, our task is to find points p € Ry and ¢ € Ry such that 7g(p,q) =
G (R, Ry). We say that p and ¢ realize 7¢(R1, R). Note that p and ¢ lie on the boundaries of R,
and R, but are not necessarily vertices.

To obtain a better intuition, let us imagine surrounding R; and R with a rubber band inside
P. The resulting shape is called the relative conver hull of Ry and R,. It is formed by four pieces:
shortest paths my = wg(a1, az), 72 = 7g(b1,b2) (a1,01 € Ry and ag, by € Ry), and the boundaries
of Ry and R, farther away from each other. We call ay, by, ag, and by the geodesic tangent points,
and 7 and 7wy the geodesic external tangents of Ry and R,. Note that if 7y consists of more than
one link, then the first (resp. last) link of 7y is a common tangent between R; (resp. R3) and the
convex hull inside P of a portion of the boundary of P (see Fig. 3.2), and similarly for my. Let
s1 = (a1,b1) and sy = (ag, by). If we replace Ry and Ry with s; and sg, then the relative convex
hull of s; and s; is the hourglass H(s1, sz) bounded by sy, sg, 71, and 73. Note that m; and 7y stay
unchanged. We call H (s1, s2) the geodesic hourglass between Ry and R;. We say that H(sq, s2) is
open if m; and 7y do not intersect, and closed otherwise. When H (s, s2) is closed, there is a vertex
p1 at which 7; and 73 join together, and a vertex py at which the two paths separate (possibly
p1 = p2); we call p; and py the apices of H(sy,ss) (see Fig. 3.2(b)). Also, we say that 7g(a1,p1)
and 7g(by,p1) form a funnel F(s1). The only internal common tangent p; of P among all edges
of F(s1) is called the penetration of F(s;), and similarly for p; in funnel F(sz) (see Fig. 3.2(b)).
Hereafter we use Hg to denote the geodesic hourglass, and ay,b; (€ Ry), az,by (€ Ry) to denote
the geodesic tangent points.

(@) (b)

Cog A
ce LS

Figure 3.2: Geodesic hourglass Hg and geodesic external tangents: (a) Hg is open; (b) Hg is
closed.

37

Observe that Hg is open if and only if Ry and Ry are mutually visible (see Fig. 3.2(a)). If
Hg is closed, then 7g(p/,¢') between any point p’ € Ry and any point ¢’ € Ry must go through
p1 and py (see Fig. 3.2(b)). Thus wmg(R1, R2) must go through p; and ps, ie., 7g(R1,R2) =
G (R1,p1) U mg(p1,p2) U mg(p2, R2). Since Ry and p; are mutually visible, the algorithm for
computing 7g(Ry, Ry) when Ry and Ry are mutually visible can be used to compute 7g(Ry,p1) as
well, and similarly for 7g(ps, R2). In summary, we need to handle the following two main tasks:
(7) deciding whether H¢ is open or closed, and finding apices p; and py when Hg is closed, and
(77) computing mg(R1, R2) when R; and R, are mutually visible.

3.3.1 The Pseudo Geodesic Hourglass

We first discuss how to compute the information about geodesic hourglass H¢ in optimal O (log b+
logn) time. A straightforward method is to compute H¢ directly. As shown in [7], we can compute
the geodesic external tangents between Rq and Ry (and hence H¢) by a binary search mimicking
the algorithm [90] for finding ordinary common tangents, where in each iteration we compute the
shortest path between two chosen points rather than the segment joining them. However, this
results in a computation of O(loghlogn) time. Also, it seems difficult to compute H¢ in optimal
time.

To overcome the difficulty, we notice that it is not necessary to compute Hg exactly. As for
shortest-path queries, we only need to know whether Hg is open or closed, and the apices p; and ps
of Hg when it is closed; as for minimum-link path queries (see Section 3.5), we only need to know a
visibility link between R, and Ry when Hg is open, and the penetrations p; and py of Hg when it
is closed. Interestingly, we can obtain the above information by computing a pseudo hourglass H"
with the property that if H” is open then Hg is open, and if H” is closed then Hg is closed with
the same penetrations and apices. We first describe the algorithm and then justify its correctness.

Algorithm Pseudo-Hourglass

1. Ignore P and compute the ordinary external common tangents (af, a}) and (b],b}) between
Ry and R, using the algorithm of Overmars and van Leeuwen [90], where af, b} € Ry and
ab, by, € Ry. Let s) = (af, b)) and s}, = (a}, b). Compute shortest paths 71 = 7g(a}, a)) and
7y = 7w (], b,). If they are disjoint (i.e., neither has an inflection edge) then the hourglass
H' = H(s,s}) is open. In this case s and s, are mutually visible, implying that Ry and Ry
are mutually visible. Use algorithm [90] to compute an internal common tangent ! between
71 and 7q, report {open with visibility link /} and stop.

2. Else (m; and 7y are not disjoint) H' is closed. Now the geodesic external tangents (which
constitute Hg) must go through vertices of P, and it is still possible that Hg is open. Let
uy and dy be the highest and lowest vertices of Ry, respectively, and similarly for uy and dy
in Ry. Assume that y(uy) > y(uz) (otherwise exchange the roles of Ry and R;). Compute
shortest paths 7g(u1, u2), 7a(u1,dz), 7q(di, ug) and 7g(dy, dz). Take m as the one with the
largest number of cusps (break ties arbitrarily). Consider 7 as oriented from Ry to Ry.

3. From R;,i = 1,2, compute horizontal projection points I; and r; respectively on the left and
right boundaries By, and Bp of P, by discriminating the following cases.

(a) 7 has no cusp at all.
There are two subcases.

i. y(dy) < y(uz), i.e., there is a vertical overlap between horizontal projections of Ry
and Rs.
In this case the line [: y = y(u2) connects Ry and Ry without being blocked (to be

38

(b)

proved in Lemma 3.1). Report {open with visibility link /} and stop.
ii. There is no vertical overlap (see Fig. 3.3).
Project u; horizontally to the left and right on the boundaries By, and Bpr of P to
get points /; and ry, respectively (via point location), and similarly project ds to
the left and right to get I and rs.
7 has cusps.
Consider Ry (and symmetrically for R;). Look at cusp ¢; of 7 closest to Ry, and denote
7’ the portion of 7 from ¢; to the point on R;. Without loss of generality, assume that
c1 is a lower cusp. There are two cases.
i. ¢1 is lower than or as low as dy (y(c1) < y(dy)).
This means that R is entirely blocked by ¢;. Project uy horizontally to the left and
right to get I; and rq, respectively.
ii. ¢; is higher than dy (y(c1) > y(dy)).

Then R; “stretches” beyond c¢;. Consider the following subcases.

A. The first link of 7 (oriented toward R;) goes toward left (see Fig. 3.5(a)(b)).
Project both u; and d; to the right to get r1 and [y, respectively. Also a special-
case checking is needed: if segment (dy,/;) intersects Ry at v, then report {open
with visibility link / = (dy,v)} and stop.

B. The first link of 7’ goes toward right.

Project both u; and d; to the left to get I; and rq, respectively. Again perform
a special-case checking: if segment (dy,r;) intersects Ry at v, then report {open
with visibility link ! = (dy,v)} and stop.

4. Compute shortest paths m = 7wg(l1,l2) and 7, = wg(r1,r2). Extract the “left bounding
convex chain” Cpr for Ry as the portion of 7; from [; to z, where z is the first vertex v; on
Bp or the first point ¢ with y(¢) = y(I1) or the second cusp ¢z, whichever is closest to Ry, or
x = Iy if none of vy, ¢ and ¢5 exists. Note that Cp, includes the first inflection edge if z = v;.
Similarly extract the “right bounding convex chain” Cpgy of Ry from m,.. The left and right
bounding convex chains Cry and Cpry of Ry are computed analogously (see Fig. 3.4).

5. Compute pseudo tangent points ay,by € Ry and a}, by € Ry such that the pseudo hourglass
H" formed by mg(af,dy), nq(by, b)), s{ = (af,b)) and s = (af, b)) has the desired property.
Point af is computed from Ry and Cr,; by the following steps (and analogously b, ¢ and b}
are computed from R; and Cpry, from Ry and Cpg, and from Ry and Cgg, respectively).

(a)

Check whether R; intersects Cp1 (viewing Cr; = wg(l1,2) as a convex polygon with
edge (I1,2) added) using the algorithm [20], which runs in logarithmic time and also
reports a common point ¢ inside both Ry and C7, if they intersect. If By N Cr1 = 0,
then find the internal common tangent ¢ = (v, w) between Ry and Cr1, v € Ry, w € Cry,
such that R; lies on the right side of ¢ if ¢ is directed from w to v (see Fig. 3.3). Note
that only one of the two internal common tangents between R; and Cp; satisfies the
criterion for £. Now check whether ¢ intersects Cr; via a binary search on Cg;.

i. tNCpry = 0. Set af :=wv.

ii. tNCpr1 = {y1,y2}. Let Cpy be the portion of Cry between points y; and y,. Find
the external common tangent ¢’ = (v/, w’) between Ry and C%,, v’ € Ry, w’ € Chgy,
such that both R; and C%, lie on the right side of #' if ¢’ is directed from w’ to v'.
Set af :=v'. (See Fig. 3.3.)

Else (R4 N Cr1 # 0, with a common point ¢ inside both Ry and Cp;), then there is
only one edge of Cr, intersecting R; (to be proved in Lemma 3.3). Compute this edge

39

(u, b) by applying Lemma 3.3. Suppose b is closer to Ry than u; call b the blocking point.
Counsider the following two cases.
i. The blocking point b is on the left boundary By,.
Compute af as the tangent point from b to Ry such that R; is on the right side of
(b, ay) when (b, af) is directed toward af. (See Fig. 3.7(a)(b).)
ii. The blocking point b is on the right boundary Bp.
Take C' as the convex portion of m; (oriented from R; to R3) from b to z, where z is
the first vertex v{ on By, again or the first point ¢’ with y(¢’) = y(b) or the second
cusp ¢ after b, whichever is closest to Ry. Note that such v{ always exists since
m = wa(ly, l2) finally goes to Iy € By, and that C includes the first inflection edge
after b if z = v]. Find the external common tangent ¢’ = (v”, w"”) between R; and
C,v" € Ry,w" € C, such that both Ry and C lie on the right side of ¢" if " is
directed from w"” to v”. Set af := v". (See Fig. 3.7(c)-(f).)
6. Compute shortest paths m; = 7g(af, ay) and 73 = wg(bY, bY) to form pseudo hourglass H”.
Check whether H” is open or closed.
(a) H" is open (neither m; nor 73 has an inflection edge).
Compute an internal common tangent [between 7y and 79, report {open with visibility
link 7} and stop.
(b) H"is closed.

Penetration p; = (w1, p1) is chosen from the first inflection edges of 7 and of 7 (one

of such edges might be missing) as the one that is closer to Ry, and the endpoint p; of

p1 farther away from R; is an apex. The other penetration p; and apex py are found

similarly. Recall that an inflection edge has one endpoint on By, and the other on Bp.

To decide whether the first and last links of 7y and 7y are inflection edges, points af

and @} are viewed as on By, and b} and b} as on Br. After computing p1, p2, p1 and po,

report {closed with penetrations p; and ps and apices p; and py}, and stop.

The correctness of the algorithm is justified by the following lemmas.

Lemma 3.1 In step 3(a)i of Algorithm Pseudo-Hourglass, the line l : y = y(ug) connects Ry and
Ry without being blocked.

Proof: Recall that there is a vertical overlap between the horizontal projections of Ry and R, i.e.,
y(ui) > y(uz) > y(dy). By the definition of 7 and the fact that 7 has no cusp, the shortest path
between u; and uz must have no cusp. Thus any lower cusp ¢ of P in between Ry and Ry has y(c') >
y(ug). Similarly, any upper cusp ¢’ of P in between R; and Ry has y(c¢”) < max{y(di),y(ds)}.
Note that y(uz) > max{y(d1),y(dz2)}, therefore y(c") < y(uz) < y(c'), i.e., the line I : y = y(uz)
connects Ry and Ry without being blocked. a

Lemma 3.2 The projection points l; and r;,1 = 1,2 obtained in step 8 of Algorithm Pseudo-
Hourglass lie on distinct boundaries of P, i.e., l; € By, and r; € Bp.

Proof: The claim is obvious for steps 3(a)ii and 3(b)i since /; and r; are obtained by projecting
the same point to the left and right. Now consider step 3(b)iiA (step 3(b)iiB is similar). It is clear
that ry is on Bp, so we look at ;. If all points on 7 are higher than dy, then the horizontal line
y = y(dy) is not blocked by 7 and thus is to the left of = (recall that 7 is oriented from R to Ry).
So Iy is on By, (see Fig. 3.5(a)). On the other hand, if 7 contains some point ¢’ lower than dy, then
for ¢; to be a lower cusp, there must be an upper cusp on 7 between ¢; and ¢’ that is higher than
¢1 (see Fig. 3.5(b)). Let ¢” be such upper cusp closest to ¢y, then the line y = y(d) is blocked by
c" and the projection point /; is on By,. O

40

Figure 3.3: A running example for Algorithm Pseudo-Hourglass in the case where 7w has no cusps

and Cry N Ry = 0.

Lemma 3.3 In step 5b of Algorithm Pseudo-Hourglass, where Ry N Cr1 # () with a common point
g inside both Ry and Cp,, there is only one edge of Cr1 intersecting Ry. Furthermore, this edge
(u,b) can be computed in O(logn) time.

Proof: We prove the first part by contradiction. If there were more than one edge of Cp, inter-
secting Ry, say (v1,v2) and (vg, vs) (see Fig. 3.6(a)), then v, would be inside Ry and would also be
a vertex of P, contradicting the fact that Ry is in a free space of P.

Now we show how to compute (u,b) in O(logn) time. Assume that /; is obtained in step 3 of
Algorithm Pseudo-Hourglass by projecting w;. Then u; is inside Ry but outside Cp,1, thus segment
(g9,u1) € Ry intersects the boundary of Cr, (see Fig. 3.6(b)). By the first part of this lemma, there
is only one edge (u,b) of Cr that can be intersected by a segment inside R;. Performing a binary
search on Cp; to identify the edge intersected by (g, u1), (u,b) can be found in O(logn) time. O

Lemma 3.4 The pseudo hourglass H" computed from steps 5 and 6 of Algorithm Pseudo-Hourglass
has the property that if H" is open then the geodesic hourglass Hg is open, and if H" is closed
with penetrations p1 and ps and apices py and ps then Hg is closed with the same penetrations and
apices.

Proof: Recall that a;,b; € Ry and ag,by € Ry are the geodesic tangent points. We first consider
the case in which the bounding convex chains Cp; and Cpry do no intersect Ry, and Crs and Cpro
do not intersect Ry either (see Fig. 3.4). Define S;,7 = 1,2, as follows. If /; and r; are obtained
by projecting the same point of R; then S; = (;, r;); otherwise assuming without loss of generality
that /; is obtained from projecting d; and r; from u;, then S; = (u;, r;) U (ui, d;)U(d;, 1;). We observe
that the area bounded by S1, S, m = 7g(l1,l2) and 7, = 7g(r1, r2) properly contains Hg, therefore

41

CLo=Tis(12, Wy) Ti=Ti(13, 1) CL=Tis(l1, W)
Cr=Tig(r2, Wa) TL=Tig(r1, o) Cri=Tig(r'y, ©)

Figure 3.4: Step 4 of Algorithm Pseudo-Hourglass and proof of Lemma 3.4. As for step 4,
notice how we get the bounding convex chains Ct1,CRry,Cr2 and Cpa, especially Cr; and Cra;
as for Lemma 3.4, note that Ry and R; do not intersect any of the bounding convex chains,
Sl = (ul, 7‘1) U (ul, dl) U (d17 ll), Sz = (127 Tz), and HG = (al, bl) U ((127 bz) U 7TG(a1, az) U ﬂ'G(bl, bz)
is properly contained in Sy U Sy U 7 U m,.

(b)

Figure 3.5: Step 3(b)iiA of Algorithm Pseudo-Hourglass and proof of Lemma 3.2: r; and [; are
obtained by projecting uy and dy horizontally to the right; ry is on Br and [is on By..

ay and by are computed from the common tangents between Ry and Cr1/CRg1, and similarly for a,
and by (see Fig. 3.4, and also Fig. 3.3 for one more example). These are exactly what we compute
in steps 5a—5(a)ii, i.e., H” = Hg, and the lemma follows.

Next, look at the case where at least one of the bounding convex chains intersects Ry or Rs.
Since af, a4, b and b)) are computed independently, we consider only a/’; the same argument applies
for the others. As we have already seen, af = a; when Cp,; does not intersect R, so we consider
a} when Cp, intersects Rj.

42

(@) (b)

Figure 3.6: Proof of Lemma 3.3: (a) impossibility for Cr; to have more than one edge intersecting

Rq; (b) finding edge (u,b).

We claim that in this case either af = a1, or ng(af,ay) and mg(a1,az) join together at a
point before their first inflection edge (if any) closest to Ry. This implies that if mg(a1, a2) has no
inflection edge (a case where whether Hg is open or closed is decided by 7w (by, b2)) then wg(af, af)
has no inflection edge either, and if p) is the first inflection edge of 7 (a1, az) (a case where Hg is
closed with p} a candidate for py) then p] is also the first inflection edge of 7¢(af, @y), and thus
the lemma follows.

We now give the details for proving the above claim. Note that 7¢ (a1, az) joins 7; at some point
then leaves 7 later, and similarly for mg(af, ¢}). First, look at the case where the blocking point b
is on By, (step 5(b)i) and refer to Fig. 3.7(a)(b) to visualize the proof. By the definition of Cr, and
the fact that b is on By, m¢(li,b) C Cry is the convex hull inside P of the boundary of By, from
I to b and it does not touch Bpg, so no vertex of Bp lies to the left of (u,b) € mg(l1,b). But af is
to the left of (u,b), thus (af,b) N Br = . We classify two subcases: (i) (af,b) N (Br — {b}) =0
and (ii) (af,b)N (B, — {b}) # 0. For (i), let ¢ be the vertex on Cr; = 7¢(l1,) immediately after
b. Such ¢ always exists since b # z: for (u,b) to intersect Ry, b cannot be Iy or the first point ¢
with y(c¢) = y(l) or the second cusp cg, and b cannot be the first vertex v; on Bp either since
b € Br. Because Cp; is convex toward right, the chain (u,b,q) C Cr; is convex toward right,
but then (af,b, g) is also convex toward right (see Fig. 3.7(a)). This means that the shortest path
ma(ar,p’) C mglay, ag) from ay to any point p’ on 77 beyond b must go through b. Then the first
link of mg(a1,aq) is (af,b) since (af,b) is tangent to Ry and does not cross any boundary of P.
Therefore a¢f = a;. For (i), let CH be the convex hull inside P of the boundary of Bj, between
b and ', where b’ is the intersection of By, and (af,b) such that C'H is as large as possible while
not intersecting R;. Clearly 7g (a1, az) goes through b, starting with a common tangent between
Ry and C'H then following CH up to b; likewise, mg(a!, a}) goes through b starting with a tangent
from af to C'H then following CH up to b (see Fig. 3.7(b)). Observe that 7 (a, a5) and mg(a1, az)
join together at a point on C'H that is before b, and neither path has an inflection edge before
reaching b, so the claim holds.

Now look at the case where b is on Bg (step 5(b)ii). There are four subcases: (1) w” € By,
and (w”,af) N (Br, — {w"}) = 0; (2) w” € By, and (w”,a) N (B, — {w"}) # 0; (3) w" € Br and
(w”,a{)N By, = 0; and (4) w” € Br and (w”,a{)N By, # 0. For (1), let 2; and 2 be the vertices on
7 immediately before and after w” (see Fig. 3.7(c)). Note that (z1, w”) is an inflection edge, so the

43

chain (z1,w", z2) is convex toward right (although 7 (b, w") is convex toward left). But the slope
of (w”,a) is even bigger than the slope of (w”, zy), thus (af,w"”, z4) is also convex toward right.
Similar to case (i), this means that mg(a1,p’) C 7g(a1,az) from a; to any point p’ on 7 beyond
w” must go through w”, but (af, w”) is a tangent to Ry not blocked by P and hence the first link
of mg(a1,aq), ie., af = ay. Case (2) is similar to case (27) as w” plays the role of b, i.e., both
ma(ar, az) and wg(af, ay) go through a convex hull CH inside P of some portion of By, then reach
w”, with no inflection edge up to w” (see Fig. 3.7(d)). For (3), it is clear that 7¢(a1, p’) C g (as, az)
from a; to any point p’ on m; beyond w” must go through w”, but (af,w") is a tangent to Ry not
blocked by P, so (af,w") is the first link of mg(a1,az) and af = a; (see Fig. 3.7(e)). For (4), let
CH' be the convex hull inside P of the boundary of By, from ¢ to g2, where ¢; is the intersection
of (w”,af) and By, closest to w”, and ¢ is the intersection of (w”,a{) and By, such that CH' is
as large as possible while not intersecting Rqy. Then 7w¢(a1, ag) goes through w”, starting with a
common tangent between R and CH’, followed by a portion of CH', a common tangent s between
CH' and C = wg(b, z), then a portion C’ of C up to w”; likewise, 7g(af,aly) goes through w”
starting with a tangent from af to CH’, followed by a portion of CH’ then s then C’ up to w”
(see Fig. 3.7(f)). Clearly, the paths 7g(a1, az) and 7g(af, ¢f) join together at some point on CH’
before reaching their first inflection edge s. This completes our proof of the claim. O

We conclude with the following lemma.

Lemma 3.5 Algorithm Pseudo-Hourglass correctly decides whether the geodesic hourglass Hg is
open or closed, giving a visibility link when it is open or giving the penetrations and apices of Hg
when it is closed, in O(logh + logn) time, which is optimal.

Proof: The correctness follows from Lemmas 3.1-3.4. As for time complexity, recall from our data
structure (described at the beginning of Section 3.3) that we can extract a portion of a shortest
path (path extraction for short) via split/splice operations in logarithmic time. Step 1 performs
O(1) tangent computations and shortest-path queries. Step 2 performs four shortest-path queries.
Step 3(a)i can be done in O(1) time, and step 3(a)ii involves O(1) point-location queries to find
projection points. In Step 3b, we perform a path extraction; in steps 3(b)i and 3(b)ii, we perform
O(1) point-location queries to project points and also binary searches for special-case checkings.
We compute two shortest-path queries and extract four bounding convex chains in step 4. Step 5a
invloves O(1) calls to algorithm [20], and O(1) tangent computations and binary searches. Step 5(a)i
can be done in O(1) time, and step 5(a)ii performs O(1) path extractions and tangent computations.
Step 5b applies the computation of Lemma 3.3, which is a binary search. Steps 5(b)i-5(b)ii invlove
O(1) tangent computations (5(b)i and 5(b)ii) and path extractions (5(b)ii). Finally, we perform
O(1) shortest-path queries, tangent computations and binary searches in step 6. In summary, we
perform a constant number of logarithmic-time computations, and the time complexity follows. O

3.3.2 The Case of Mutually Visible Query Polygons

We now discuss how to compute mg(R1, R2) when Ry and R; are mutually visible, i.e., when the
geodesic hourglass Hg is open. Surprisingly, this case turns out to be nontrivial, and its solution
makes use of interesting geometric properties. Note that mg(R1, R2) in this case may still consist
of more than one link (see, e.g., Fig. 3.8, where 7 (R1, R2) = 7¢(p, q)).

Ignoring P and using any one of the methods for computing the separation of two convex
polygons [31, 45, 48], we can find p’ € Ry and ¢ € Ry with length(p',¢') = o(Ry, R2) in O(logh)
time. Now we compute mg(p’, ¢'). If 7¢(p', ¢') has only one link, then (p/, ¢’) is not blocked by P
and thus is the desired shortest path 7g(R1, R2). Otherwise 7g(p/, ¢') must touch the boundary of
P, and there are two cases: (1) m¢(p’,¢') touches only one of the two geodesic external tangents

44

CL1=Ti(l1, b) CH'= , CL1=Ti(Iy, b)
CETG(b, zl) Tig(d1, %) C=ieb, 2)

Figure 3.7: Steps 5(b)i-5(b)ii of Algorithm Pseudo-Hourglass and proof of Lemma 3.4: (a) b € By,
and (b,af) N (Br, — {b}) = 0; (b) b € By, and (b,a{) N (Br, — {b}) # 0; (c) b € Br,w"” € By, and
(w”, a)N(Br,—{w"}) = 0; (d) b € Br,w"” € B, and (w”, a{)N(Br,—{w"}) # 0; (e) b € Br,w" € Br
and (w”,af) N Br, = 0; and (f) b € Br,w"” € Br and (w”,a}) N By, # 0.

45

mg (a1, az) and wg(by, be); or (2) ma(p’, ¢') touches both wg(ay,az) and wg(by, ba).

Lemma 3.6 Let the geodesic hourglass Hg be open and (p',q') with p' € Ry and ¢’ € Ry be the
shortest path between Ry and Ry without obstacle P. If ng(p',¢') touches only one of mg(ay, az)
and g (b1, b2), say mg (a1, az), then ng(Ry1, Ry) touches mg(a1, az) but does not touch (b1, bs).

Proof: We refer to Fig. 3.8 to visualize the proof. Let (w, z) be any segment tangent to the convex
chain 7¢(p',¢'), where w € Ry and z € Ry. Without obstacles C and D, the distance between
a point on the boundary of Ry and a point on the boundary of Rs is a bimodal function, i.e., it
decreases and then increases, with the minimum occurring at p’ and ¢’. In particular, moving w
downward along the boundary of Ry to any point w’ and /or moving z downward along the boundary
of R, to any point 2z’ will cause (w’, 2') > (w, 2), and 7g(w’, 2') > (w', 2’) since mg(w', 2’) may have
to avoid obstacles. Thus if p € Ry and g € R; satisfy 7g(p, ¢) = 7¢(R1, Rz2), then p must lie on the
boundary (w, ...,p") of Ry counterclockwise from w to p’, and ¢ must lie on the clockwise boundary
(z,...,¢) of Ry. It follows that mg(p, ¢) touches 7 (a1, az) but does not touch wg(by, by). |

Figure 3.8: Lemma 3.6

Therefore in the above situation (see Fig. 3.8), if #{ and #} are the points of obstacle C' where
e (p',¢') first touches C and finally leaves C, respectively, and t; and t; are the points of C
where 7¢(p, q) first touches C and finally leaves C' (recall that 7g(p, q) = 7q(R1, Rz2)), then t; is
the point where the shortest path mg(], R2) from #| to Ry finally leaves C, and similarly for ¢;.
We say that ty € C and ¢ € Ry realize m¢(t), R2), and similarly for the other side. It is clear
that 7g(Ry, R2) consists of (p,t1), mq(t1,t2) (which is a portion of mg(p',¢’)), and (t2,¢). So we
only need to independently compute t; € C' and ¢ € Ry that realize ng(t), R2), and by a similar
algorithm to compute ¢; and p that realize mg(t5, R1).

Before describing how to compute ¢3 and ¢ (and similarly for #; and p), we first argue that the
other case where 7 (p', ¢) touches both 7¢(ay, az) and 7g(by,bs) can be handled in the same way.

Lemma 3.7 Let the geodesic hourglass Hg be open and (p',q') with p’ € Ry and ¢’ € Ry be the
shortest path between Ry and Ry without obstacle P. If ng(p',q') touches both mg(a1,az) and
7 (b1,b2), say first mg(ay,aq) (entering at point t; and leaving at point t3) and then wg(by, ba)
(entering at t4 and leaving at t3), then 7q(R1, R3) = ng(Ry, t3)U(ts, ta)Ung(ts, R2). (See Fig. 3.9.)
Proof: We refer to Fig. 3.9. We extend (t3,t4) on both directions to intersect Ry and Ry at w and
z, respectively. Notice that (w, z) is an internal common tangent of two convex chains 7g (a1, az)

46

and 7 (b1, bz). Again, without obstacles the distance between a point on R; and a point on Ry
is a bimodal function. In particular, moving z upward along the boundary of R, to any point 2’
and/or moving w downward along the boundary of Ry to any point w’ will make (w',z") > (w, z).
Observe that mg(w’, 2') > (w', 2’) since it may have to avoid the obstacles. Therefore the desired
points p € Ry and ¢ € Ry with 7g(p, ¢) = 7q(R1, R2) must lie on the clockwise boundary (p/, ..., w)
of Ry and on the clockwise boundary (¢, ..., z) of Ry, respectively. It follows that 7¢(p, ¢) must be
first tangent to 7g (a1, az) at some point, coincide with 7g (a1, az) from there to t3, follow (f3,%4) to
enter g (b1, b2), join 7g(b1,b2) from #4 to some tangent point, which together with ¢ are the two
endpoints of the last link. Therefore 7g(Ry, Ry) = mg(R1,t3) U (t3,t4) U e (ta, Ra). O

Figure 3.9: Lemma 3.7

It is clear that for the above situation, what we need to do is to independently compute the two
points that realize 7¢(R1,t3) and two points that realize 7 (t4, R2).

We now discuss how to compute two points t3 € C and ¢ € Ry that realize g (#], Rz) in the
situation of Fig. 3.8; the other case (Fig. 3.9) can be handled analogously. Note that we only need
to consider the two convex chains mg(u,t;) (denoted by Cy) and the clockwise boundary (v, ..., ¢')
of Ry (denoted by C3), where (u,v) is the external common tangent between the convex hull of C
and Ry with v € C' and v € Ry. Our algorithm is based on the following useful properties.

Lemma 3.8 Let vy, vz, ..., vk be a sequence of points on Cy in clockwise order, and €. and e/ be
the two segments of Cy incident on v; with €} following €! in clockwise order (e and €! are on
the same straight line if v; is not a vertex). From each v; draw a line l; tangent to Cy. Let 6;
be the angle formed by l; and €. and measured from l; clockwise to e, and ¢; be the angle formed
by € and l; and measured from e clockwise to l; (see Fig. 8.10). Then 0; < 03 < ... < 0 and

1> G2 > ... > ¢ Also, if 0; > T then ¢ip1 < T, and similarly if ¢;11 > T then 6; < 7.

Proof: We extend tangent ;11 to intersect /; at some point r, and also extend e’ on both directions
so that 8, and ¢} are both exterior angles of Arv;v;1; (see Fig. 3.10). It follows that ;1 > 6 | >
6; (the equality holds if v;4; is not a vertex), and ¢; > ¢} > ¢;11 (the equality holds if v; is not a
vertex). For the last statement, consider Arv;v;4+1. It is clear that at most one of §; and ¢;+1 can
be larger than or equal to 7. |
Lemma 3.9 Let vy, v,...,vx and each 0; and ¢; be as defined in Lemma 3.8. If ¢; > 7, then
TG (vi, 1)) < ma(vim1,). Similarly, if 0; > 7, then ng(vi,t]) < TG (vigr,1]).

47

Figure 3.10: Lemma 3.8

Proof: We refer to Fig. 3.11 to visualize the proof. Let the tangent points on C; of I; and of [;_;
be u; and u,,, respectively, where uq, ug, ... are the vertices of C; in counterclockwise order. We
extend each of (us, us41) to the right to intersect Cy at some point u}, s =m,m+1,...,7— 1. In
Avyujul_y, (uj,u’_y) > (uj, v;) since ¢; > 7 is the biggest angle. Adding (uy, u;-1) to both sides of
the inequality, we have g (v;, uj_1) = (vi, wj) + (uj, wj1) < (w)_y,uj) + (uj, uj—1) = (wj_y, uj1),
thus 7g(vi,t)) = ma(vi,uj1) + 7a(uj—1,t)) < (Wj_y,uj1) + 7a(uj-1,t)) = 7a(uj_y, 1)), ie,

! ! ! / ! ! : LI, ! /
Ta(vi ty) < ma(uj_y,t1). Now, ¢; = Lu);_,u’_,ujis an exterior angle of Au’,_,v;u;, s0 ¢} > ¢; > 7.

By the previous argument, mg(u;_y,t}) < mg(uj_,,%]). Applying this process repeatedly, we have
Ta(vi, 1) < ma(ul_y, 1)) < ma(uf_y,th) < ... < mg(vi—1,t]). The other statement can be proved in

the same way. O

Figure 3.11: Lemma 3.9

Notice that for each v; € Cy, 0; + ¢; > 7 since (' is a convex chain (the equality holds when v,

48

m

is not a vertex), thus either ¢; > 7 and 7g(v;, t}) < mg(vi—1,t]) < m7g(vim2,t]) < ..., or §; > 7 and
mG(vi, 1)) < 7G(vig1,t]) < Tg(vige, 1)) < ..., by Lemmas 3.8 and 3.9. If both ¢; > 7 and 6; > T,
then v; = ¢, i.e., mg(v;,t}) = 7q(Cq,t}). We summarize this result in the following lemma.
Lemma 3.10 Let w be a point on Cy. Moving w along Cy, the length of m¢(w,t]) is a bimodal
function, i.e., it decreases and then increases. In particular, the minimum value occurs at w = v;
with ¢; > 5 and 8; > Z. If this v; is not a vertex, then ¢; = 0; = 7, namely, the line issuing from
v; and tangent to C1 is perpendicular to the edge of Cy containing v;.

Up to now we can compute t; € C; and ¢ € C; that realize 7g (¢}, C2) by a binary search on
the vertices of Cy, where at each step we compute a tangent of Cy from the current vertex of Cs,
check for angles # and ¢ and then reduce the search space. Finally, we also have to take care of the
case where ¢ is not a vertex. Since tangent computation takes logarithmic time, this method has

time complexity O(loghlogn). To speed up the algorithm, we appeal to the properties from Cj.

Lemma 3.11 Let uy = u,ug,...,ux = t, be the vertices of Cy in counterclockwise order. The
extension of each edge (u;_1,u;) intersects Cy at some point v;, 1 = 2,...k. Let v! and v! be the
two vertices of Cy adjacent to v;, with v following v! in clockwise order. Let 0; = Lu;v;v} and
i = Lu;viv! (see Fig. 8.12). Then 6y < b5 < ... < bk, and ¢g > ¢3 > ... > ¢y.

Proof: Since (¢',t,) is a tangent to Cy (recall this from Fig. 3.8), its slope is larger than the
slope of (ug—1,t,), which shows that the extension of (ug_1,t5) is below ¢’ and thus intersects Cj.
Similar argument applies to the extension of (u1,uz), so all such extensions intersect Cy. We now
prove that 8; < 6;41; the proof of ¢; > ¢;4+1 is similar. Let wy, ..., w; be the vertices of Cy between

v; and vy in clockwise order. Draw a segment to connect u; with each of wy,...,w; and define
0, = Lu;w;wiy1 (0] = Lu;wviqq). Then 6; < 0] < ... <] < 0;41 by the argument that an exterior
angle of a triangle is larger than each of the two far interior angles. |

Figure 3.12: Lemma 3.11

Lemma 3.12 Let t; € Cy and q € C; realize ng(t), Cy), where ty is some verter u;. Let each 6;
be defined as in Lemma 3.11. Then 0; < 5 and 0,1, > 7.

Proof: We refer to Fig. 3.13. Let v’ and v” be the two vertices of Cy adjacent to point ¢, with v’
following v” in clockwise order. There are two cases. If ¢ is not a vertex, then by Lemma 3.10, (uj, ¢)

49

is perpendicular to (v',v”) (see Fig. 3.13(a)). We extend (v’,v") to intersect rays (u;_1,u;) and
(u;, ujy1) respectively at r” and v/, and make angles " and ¢’ as shown. We see that 8’ > Lujqr’' = T
since it is an exterior angle of Aujgr’, and #;1; > 6" (the equality holds when ray (u;,u;4+1)
intersects edge (v',v")), so 641 > %. Similarly 6" < T (since in Aujqr”, Lujqr” = 7) and 6; < 6"
(again, the equality holds when ray (u;_1, u;) intersects (v',v")), so 8; < 7. In the other case where
q is a vertex, by Lemma 3.10 Lujqv’, Lujqv” > 7 (see Fig. 3.13(b)). Again we extend (q,v’) to
intersect ray (uj, u;41) and make angle #', and extend (g,v") to intersect ray (u;_1,u;) and make
angle #” as shown. By the same argument, we have that 6;,; > 6’ > Lujqv’ > T and 8; < 0" < Z.

O

@ (b)

Figure 3.13: Lemma 3.12

Now we are ready to state the algorithm for computing t3 € C; and ¢ € C5 that realize
ma(th, Ca). This is actually a double-binary search.

Algorithm Double-Search
1. If either | C; |= 1 or | C3 |< 2 then go to step 3.

2. Else, pick the median vertices v and w of current C; and Cy. Let v’ be the vertex of C that
precedes v in counterclockwise order, and w’ be the vertex of Cy that follows w in clockwise
order. Intersect the ray r = (v’,v) with the line extension !’ of edge (w,w’). Let 6 be the
angle made by r and ! by measuring clockwise from r to I’. The actions (and the verification)
depend on the following cases (see Fig. 3.14):

(a) The intersection is below (w,w’) and # > % (Fig. 3.14(a)): prune the wiggly portion
(not including w).
Verification: Draw a line [from w parallel to (v/, v). Since [is above (v, v), the tangent
t from w to C7 must make an angle ¢’ > 6 > 7. Thus the tangent of C; from any point
in the wiggly portion will make an angle even bigger, so this portion can be pruned away
by Lemma 3.10.

(b) The intersection is below (w,w’) and 6 < % (Fig. 3.14(b)): prune the wiggly portion
(including v').
Verification: The real intersection between ray (v/,v) and C makes an angle #' < 6 < 7.

50

(e)

(f)

By Lemmas 3.11 and 3.12, any edge in the wiggly portion will make an angle even smaller
and thus this portion can be pruned away.

m

The intersection is above (w,w’) and § > 7 (Fig. 3.14(c)): prune the wiggly portion
(including v). This is symmetric to case (b).

The intersection is above (w,w’) and § < % (Fig. 3.14(d)): prune the wiggly portion.
This is symmetric to case (a). Note that w itself is not a candidate for ¢ but w is not
pruned away here, since ¢ may still lie on (w,w’) and thus w must be kept to retain
(w, w").

The intersection is on (w,w’) and 6 > 7 (Fig. 3.14(e)): prune the two wiggly portions
(including v but not w’ so that (w,w’) is kept). This is a situation combining cases (a)
and (c).

The intersection is on (w,w’) and 6 < 7 (Fig. 3.14(f)): prune the two wiggly portions
(including v’ but not w so that (w, w') is kept). Again this is a situation combining cases

(b) and (d).

After pruning the appropriate portions, go to step 1.

. Now | C; |=1or | Cy |< 2, a situation where the double-binary search in step 2 cannot
proceed (either | Cy |= 1 and | Cy |# constant or | Cy |= 1 and | Cy |# constant) or may not
make any progress (case (d) with | Cy |= 2 and | Cy |# constant). The operations depend on
the following cases:

(a)
(b)

| C3 |= 1. The only vertex of Cy is ¢q. Compute the tangent from ¢ to C; and take t; as
the tangent point. Report ¢ and ¢;, and stop.

| Cy |= 2. Let Cy = {wy, wy} such that walking from w; to wy the interior of Ry is to

the right of (wy,w3). From w; and wy compute tangents (wy,vy) and (wq,ve) of Ci,

where vy, vy € Cq. Let 8 = Zvywiwy and ¢ = Zvowaw;. There are three subcases.
i. 6 > 7. By Lemma 3.10, ¢ = w; (and #; = v;). Report ¢ and t;, and stop. Note
that ¢ < 5 by Lemma 3.8.

ii. ¢p > 7. Report ¢ = wy, t3 = v, and stop. This is symmetric to case i.

iii. §; < § and ¢y < § (and ¢ # wy,wy). By Lemma 3.10, (t2,¢) is perpendicular
to (wy, wy) and is tangent to C;. Perform a binary search on subchain (vy, ..., v2)
of Cy to find such vertex t3: At each iteration with current vertex v, compute its
projection point v’ on (wy, w;y), check whether vertex v on Cy is concave, reflex or
supporting with respect to (v, v’) and branch appropriately. When v is supporting,
report to = v, ¢ = v’ and stop.

| C1 |= 1. The only vertex of Cy is t3. Now perform a binary search on Cy. Let

w1y, ..., Wy, be the vertices of Cy in clockwise order. At each step with current vertex w;,

let 8; = /Ltow;w;yq and ¢; = Ltsw;w;—1. Recall that ; < §; < ... < 0 by Lemma 3.8,

and if 6; > 7 and ¢; > § then w; = ¢ by Lemma 3.10. The binary search proceeds to

find the smallest index 7 such that 6; > 7. If also ¢; > 7, then ¢ = w;; report ¢ and
t2, and stop. Else, both ¢; and 6; 1 are less than 7, and thus #; has a projection ¢ on

(wi, wi—1). Report t3 and ¢, and stop.

Note that the loop formed by steps 1 and 2 eventually makes either | Cy |=1 or | Cy |< 2, and

thus we finally exit the loop and go to step 3. Indeed, when C} is reduced (cases (b), (c), (e) and
(f) of step 2), either v or v’ is also pruned away, so that Cy with | C |= 2 is further reduced to
| C1 |=1; when only Cj is reduced (cases (a) and (d) of step 2), one of the two portions preceding
and following w is pruned away, so that Cy with | Cy |= 3 is further reduced to | Cy |= 2.

Lemma 3.13 The time complexity of Algorithm Double-Search is O(logh + logn).

51

(b)

(c) (d)

Figure 3.14: The cases (a)—(f) in step 2 of Algorithm Double-Search.

Proof: In each case of step 2, we always discard half of C; and/or half of C3, so the loop formed
by steps 1 and 2 takes O(logh + logn) time. Step 3 also takes logarithmic time, since either | Cy |
or | Cy | is a constant and a constant number of simple binary searches are performed on the other
chain. |

We now give an algorithm for computing the shortest path 7¢(R1, Ry) between Ry and Ry when
they are mutually visible.

Algorithm Visible-Path
1. Ignore P and compute the separation o(Ry, R2) of Ry and Ry by any one of the methods [31,
45, 48], which gives two points p’ € Ry and ¢ € Ry such that length(p’,¢') = o(R1, R2).
2. Compute 7g(p',¢'). If 7a(p', ¢') has only one link, then (p/,¢’) is not blocked by P; report
e (Ry1, Ry) = (p', ¢') and stop.

52

3. Otherwise, 7¢(p', ¢') must touch the boundary of P. Let (p',t}) and (t},¢') be the first and
last links of 7 (p/, ¢'). Discriminate the two cases below:

(a) There is no inflection edge in wg(p’, ¢'): this is the case of Lemma 3.6 (Fig. 3.8). Let
C = mg(t},t,). Find the external common tangent (u,v) between C' and Rg, where
u € C and v € Ry; let C be ng(u,ty) and Cy be the clockwise boundary (v, ..., q")
of Ry. Compute t; € C and ¢ € Ry that realize w¢(#], R2) by performing Algorithm
Double-Search on €'y and Cy, and similarly compute t; € C and p € R; that realize
ma(th, R1). Report mg(Ry, R2) = (p,t1) U mg(ti, t2) U (t2, ¢) and stop.

(b) There is an inflection edge (t3,t4) in wg(p’, ¢'): this is the case of Lemma 3.7 (Fig. 3.9).
Use Algorithm Double-Search to compute two pairs of points that respectively realize
G (Ry,t3) and mg(ta, R2). Report mg(R1, R2) = ng(Ry,t3) U (t3,t4) U mg(ta, R2) and
stop.

Lemma 3.14 The time complezity of Algorithm Visible-Path is O(log h + logn) (plus O(k) if the
k links are reported).

Proof: The separation computation in step 1 can be done in logarithmic time. Other computations
involve a shortest-path query (step 2), two tangent computations and two calls of Algorithm Double-
Search (step 3(a) or 3(b)), each taking logarithmic time. O

3.3.3 The Overall Algorithm

The overall algorithm for computing the shortest path 7g(R1, R2) between Ry and R; is as follows.

Algorithm Shortest-Path

1. Perform Algorithm Pseudo-Hourglass to decide whether the geodesic hourglass Hg is open
or closed (with apices py (closer to R;) and p, (closer to Ry)).

2. If Hg is open, then apply Algorithm Visible-Path to report mg(R1, R2) and stop.

3. Otherwise (Hg is closed), apply Algorithm Visible- Path to find shortest paths 7¢(R1, p1) and
7G(p2, R2) by treating p; and py as “convex polygons” consisting of only one vertex. Compute
shortest path 7g(p1, p2), report mq(R1, R2) = 7q(R1,p1) U ma(p1, p2) U ma(p2, R2) and stop.

Lemma 3.15 Algorithm Shortest-Path has time complezity O(logh + logn) (plus O(k) if the k
links of the path are reported), which is optimal.

Theorem 3.1 Let P be a simple polygon with n vertices. There exists an optimal data structure
that supports shortest-path queries between two conver polygons with a total of h vertices inside P
in time O(logh + logn) (plus O(k) if the k links of the path are reported), using O(n) space and
preprocessing time; all bounds are worst-case.

Remark. Although the case of mutually visible Ry and Ry is nontrivial, our algorithms
(Double-Search and Visible-Path) turn out to involve only simple computations, by applying useful
geometric properties. The other key technique, Algorithm Pseudo-Hourglass, to decide whether
H¢ between R; and Ry is open (and compute a visibility link) or closed (and compute apices and
penetrations), however, is more involved. We pose as an open problem whether there exist simpler
techniques to perform the same operations in the same (optimal) time bound. Also, whether we
can directly compute Hg in optimal time is an open problem, and may be of independent interest.

53

3.4 Dynamic Shortest Path Queries

In this section, we consider the shortest-path problem in a connected planar map M in a dynamic
environment. The query operation is to compute the shortest path w¢(R1, R2), where the two
query convex polygons R; and Ry are given in the same region P of M. In addition, we support
edge/vertex insertions and deletions on M in our data structure. Specifically, we define the following
update operations on M:

INSERTEDGE (e, v, w, P; P, P5): Insert edge e = (v, w) into region P such that P is partitioned
into two regions P; and P.

REMOVEEDGE (e, v, w, Py, P3; P): Remove edge € = (v, w) and merge the regions P; and P, formerly
on the two sides of e into a new region P.

INSERTVERTEX (v, €; €1, €2): Split the edge e = (u, w) into two edges ey = (u,v) and e; = (v, w) by
inserting vertex v along e.

REMOVEVERTEX (v, €1, €3;€): Let v be a vertex with degree two such that its incident edges e; =
(u,v) and ey = (v, w) are on the same straight line. Remove v and merge e; and e into a
single edge e = (u, w).

ATTACHVERTEX (v, €;w): Insert edge e = (v, w) and degree-one vertex w inside some region P,
where v is a vertex of P.

DETACHVERTEX (v, €): Remove a degree-one vertex v and edge e incident on v.

The above repertory of operations is complete for connected maps. That is, any connected map
M can be constructed “from scratch” using only the above operations.

We make use of the dynamic data structure of Goodrich and Tamassia [59]. Their technique
supports two-point shortest-path queries and ray-shooting queries, which consist of finding the first
edge or vertex of M hit by a query ray. Their data structure is based on geodesic triangulation of
each region of M. Given three vertices u, v, and w of a region P (a simple polygon), which occur in
that order, the geodesic triangle they determine is the union of the shortest paths 7¢(u, v), 7g(v, w)
and mg(w, u). A geodesic triangulation of P is a decomposition of P’s interior into geodesic triangles
whose boundaries do not cross. The technique [59] dynamically maintains such triangulations by
viewing their dual trees as balanced trees. Also, rotations in these trees can be implemented via a
simple “diagonal swapping” operation performed on the corresponding geodesic triangles, and edge
insertion and deletion can be implemented on these trees using operations akin to the standard
split and splice operations. Moreover, ray shooting queries are performed by first locating the ray’s
endpoint and then walking along the ray from geodesic triangle to geodesic triangle until hitting
the boundary of some region of M. The two-point shortest path is obtained by locating the two
points and then walking from geodesic triangle to geodesic triangle either following a boundary or
taking a shortcut through a common tangent [59].

Let n be the current number of vertices in M. Using the data structure of [59], we can perform
each of the above update operations as well as ray-shooting and two-point shortest-path queries
in O(log?n) time, using O(n) space, where in O(log®n) time we get an implicit representation
(a balanced binary tree) and the length of the queried shortest path, and using additional O(k)
time to retrieve the & links we get the actual path [59]. Again we enhance this data structure
so that associated with the implicit representation of a shortest path 7, there are two balanced
binary trees respectively maintaining the inflection edges and the cusps on 7¢ in their path order.
Moreover, we can extract a portion of m¢ via split/splice operations in logarithmic time. Using this
data structure to support two-point shortest-path queries as needed by Algorithm Shortest-Path,
we get a dynamic technique for shortest-path queries between two convex polygons in M.

54

Theorem 3.2 Let M be a connected planar map whose current number of vertices is n. Shortest-
path queries between two convexr polygons with a total of h vertices that lie in the same region of
M can be performed in time O(logh + log®n) (plus O(k) to report the k links of the path), using
a fully dynamic data structure that uses O(n) space and supports updates of M in O(log? n) time;
all bounds are worst-case.

Remark. Our update operations are, in the usual dynamic setting, allowed only on M. If Ry
and/or Ry are also updated, say, by inserting an edge (u,v) between vertices u and v of Ry and
removing the clockwise boundary of Ry from u to v (or by an inverse operation while preserving
the convexity of Ry), we can, of course, first update Ry and/or R, and then re-compute 7g(R1, Rs)
by our query algorithm, in O(logh + log? n) time. An interesting open problem is whether we can
support such updates on R; and Ry while maintaining 7 (R;, R2) in time O(polylog(h)).

3.5 Static Minimum-Link Path Queries

Given two convex polygons R; and R, with a total of h vertices inside an n-vertex simple polygon
P, we want to compute their minimum-link path 77, (R, Rz). The data structure given by Arkin,
Mitchell and Suri [7] supports minimum-link-path queries between two points and between two
segments inside P in optimal O(logn) time, and between two convex polygons R; and Rj in time
O(loghlogn) (plus O(k) if the k links are reported), using O(n®) space and preprocessing time.
We show in this section how to improve the two-polygon queries to optimal O(logh + log n) time,
using the same data structure.

Let Hg be the geodesic hourglass of Ry and R,, with geodesic tangent points aq,b; € Ry and
az,by € Ry. As shown in [7], a minimum-link path between the two segments s; = (a1,b1) and
sy = (ag,by) gives a desired minimum-link path between R; and Ry, i.e., m1(s1,s2) = 7r(R1, Ra2).
Note that H(si,ss) = Hg. Recall from Section 3.3.1 that when H¢ is open (R; and R; are
mutually visible) Algorithm Pseudo-Hourglass returns a visibility link /, which can serve as the
desired link-one path I = 71, (Ry, R3). So we look at the case where H is closed. As we shall see
in Lemma 3.20 (Section 3.6), if hourglass H(sy,s2) is closed with penetrations p; (closer to sq)
and ps (closer to s3), then there exists a minimum-link path 7z, (sq, sy) that uses p; and p; as the
first and last links. This means that 77, (p, ¢) = 71(s1, s2) = 7r.(R1, R2), where points p and ¢ are
obtained by extending p; and p; to intersect Ry and Ry, respectively. Therefore the two-polygon
queries can be reduced to the two-point queries. We summarize this result in the following lemma.

Lemma 3.16 Let the geodesic hourglass Hg be closed with penetrations py (closer to Ry) and
p2 (closer to Ry), and the line extensions of p1 and pz intersect Ry and Ry at points p and g,
respectively. Then 71, (p, q) is a minimum-link path w1, (Rq, R2) between Ry and R;.

We now give the algorithm for computing a minimum-link path 77,(R;, Rz) between R; and R;.

Algorithm Min-Link-Path

1. Perform Algorithm Pseudo-Hourglass to decide whether the geodesic hourglass Hg is open
(with a visibility link [) or closed (with penetrations p; (closer to Ry) and ps (closer to R3)).

2. If Hg is open, then report 77, (Ry, R2) =1, di,(R1, Ry) = 1 and stop.

3. Otherwise (Hg is closed), extend p; and py to intersect Ry and Ry respectively at p and ¢ via
binary searches on R; and R;. Compute 7r,(p, ¢) (and thus also dr,(p,¢)) by the algorithm
of [7]. Report 7 (R, R2) = 7L(p, q), dr(R1, R2) = dr(p, q) and stop.

Lemma 3.17 The time complexity of Algorithm Min-Link-Path is O(logh + logn) (plus O(k) if
the k links are reported), which is optimal.

55

Theorem 3.3 Let P be a simple polygon with n vertices. There exists a data structure that supports
mintmum-link-path queries between two convexr polygons with a total of h wvertices inside P in
optimal time O(logh +logn) (plus O(k) if the k links of the path are reported), using O(n3) space
and preprocessing time; all bounds are worst-case.

3.6 Dynamic Minimum-Link Path Queries

In this section we show that the dynamic data structure given in Section 3.4 can also support
minimum-link-path queries between two convex polygons in the same region of a connected planar
map M. As we have already seen from the last section, we only need to support two-point queries
and justify the correctness of Lemma 3.16, which in turn establishes the correctness of Algorithm
Min-Link-Path.

3.6.1 Basic Properties

Let p and ¢ be two points that lie in the same region P of M, and (p,p’) and (¢, ¢) be the first and
last links of the shortest path mg(p, q), respectively (see Fig. 3.15). If 7 (p/, ¢’) is not a monotone
chain, there are some cusps ¢y, - - -, ¢; such that 7g(p', ¢1), 7a(c1, ¢2), - -+, 7a(ci, ¢') are the maximal
monotone subchains of 7g(p', ¢'). For ¢1, we draw a left or right lid / such that [and 7g(p/, ¢1) lie on
opposite (left and right) sides of ¢;. Let wy = (p, u) be the extension of (p, p’), where u is obtained
by ray shooting (see Fig. 3.15). We consider the subregion P’ of P delimited by w; and [. For each
cusp v of P’, we draw both lids of v if they do not intersect with 7 (p', ¢1), otherwise we draw left
or right lid of v that does not intersect with 7 (p’,¢1). Then P’ is partitioned into a collection
of monotone polygons, among which we denote by sleeve(w;) the monotone sleeve that uses w;
as its boundary and contains wg(p’,c1) (see Fig. 3.15). Excluding segment wy, the boundary of
sleeve(wy) consists of left and right monotone chains C; and Cy. We say that a line ¢ is an internal
common tangent of sleeve(wy) if ¢ is locally tangent to two vertices a and b respectively on C; and
Cy (if ¢ goes through u, then u is also considered as a tangent point, and similarly for p’). If ¢
intersects with wy and a is closer to wy than b, we call t a left tangent of sleeve(wy); a right tangent
is defined similarly.

Suppose that ¢ and " are two left (or right) tangents of sleeve(w). Let m(;(p, ¢) be the set of
points on mg(p, ¢) each of which is visible from some point of #, and v’ be the point of 7(;(p, ¢) that
is closest to ¢; v is defined similarly with respect to t”. We say that t’ extends farther than t" if v’
is closer to ¢ than v on 7g(p, ¢). Among the left tangents of sleeve(w,), the one that extends the
farthest is called the mazimal left tangent of sleeve(wy); similarly for the definition of mazimal right
tangent. By the definitions of 7z, (p, ¢) and of window partition, we have the following preliminary
algorithm for computing 71,(p, ¢), when the shortest path 7g(p, q) is given (see Fig. 3.15).

Algorithm Prelim

1. If 7¢(p, ¢) has only one link then report 77,(p, ¢) = (p,¢) and stop; else if the extensions of
the first and last links of mg(p, ¢) meet at some point v, then report 71(p, ¢) = (p,v,q) and
stop.

2. Otherwise, perform the following steps.
(a) Perform ray shooting to extend the first link of 7¢(p, ¢); this gives the first window w;.

(b) From w;, compute the monotone sleeve sleeve(w;) as described above, and compute
the maximal left tangent ¢; of sleeve(w;) and the maximal right tangent ¢. Choose ¢

56

from #; and t; as the one that extends farther. The second window w; is (p1, v2), where
p1 = wy Nt, and vy is obtained by performing ray shooting from p, along t toward gq.

(c) Repeat step 2b to compute subsequent windows, until the current window intersects
with the extension of the last link of 7¢(p, ¢), which is the last window wy.

(d) Let pi = w; N Wi41- RePOTt ﬂ-L(pa Q) = (p7p17 ct oy Pe—1, Q) and StOp.

Figure 3.15: Computing 77,(p, q) by Algorithm Prelim: the window w; following w; is chosen to
be t5 since it extends farther than t{, and so on.

Let ey, - - -, e; be the inflection edges of m¢(p, ¢). Then ey, - - -, e; partition 7g(p, ¢) into subchains
that are always left-turning or always right-turning, namely, into inward conver subchains (see
Fig. 3.16). It is shown that every inflection edge e € 7 (p, ¢) must be contained in 77,(p, q) [7, 18, 55].
Hence, extending each inflection edge of 7¢(p, ¢) by ray shooting on both sides, together with the
extensions of the first and last links of 7 (p, ¢) (where the first link extends towards ¢ and the last
toward p), we have fixed windows Wy, -, Wy (see Fig. 3.16). Now the task is how to connect
consecutive fixed windows. In particular, each W; has a portion (u,v) € 7g(p, q), with u closer to
p than v in 7g(p, ¢). Let the endpoints of W; be u’ and v’ such that W; = (u/, u, v, v’) (note that
W=u=pifi=land v =v=qifi=742). We call (¢, u) the front of W; and (v,v’) the rear
of W;. We want to connect the rear of W; with the front of W;;q foreach i =1,---, 7+ 1.

Lemma 3.18 Let W; and W41 be consecutive fized windows, W the front of W11, and w the rear
of W; or a window between the rear of W; and the front of W; 11 as computed by Algorithm Prelim.
If the hourglass H(w, W) is closed, then the window w' following w is the penetration of funnel

Proof: For any local portion of P, the boundary of P consists of two bounding chains C and
Cy. Let w = (a1,b1) and W = (ag,b2), where a; and ay are on wg(p,q) (see Fig. 3.17). Then
mG (a1, az) is a convex hull inside P of a bounding chain, say Cy, of P. By Algorithm Prelim, there
are two possible candidates for window w’: the penetration of F(w) and some internal common

57

Figure 3.16: The shortest path mg(p, ¢) is partitioned by inflection edges e, e and e3. The fixed
windows Wy, -+, Wx are obtained by extending the inflection edges as well as the first and last
links of 7¢(p, q).

tangent ¢ intersecting with w. Let p; be the apex of funnel F(w). Note that p; € C; and thus
the other tangent point of the penetration lies on C3. Then ¢ must be tangent to two vertices vy
and vy with vy € wg(a1,p1) and vy € Cy, where vy is closer to w than vy when walking along ¢.
While extending towards ¢, the penetration has a slope closer to mg(a1,az) than ¢, i.e., anything
blocking the penetration certainly blocks ¢ (see Fig. 3.17). Thus the penetration extends farther
than # towards ¢ and is chosen as the next window w’. |

3.6.2 Two Point Queries

The algorithm for computing 7r,(p, ¢) between two query points p and ¢ is as follows.

Algorithm Point-Query

1. Compute the shortest path 7¢(p,q). If 7g(p,¢) has only one link, then report 7z (p,q) =
(P, 4), dz(p, ¢) = 1 and stop.

2. Else, perform ray-shooting queries to extend the first link of 7¢(p, ¢) in the direction toward
q, and the last link of 7g(p, ¢) in the direction toward p. If they intersect with each other
at some point v, then report 7r(p,q) = (p,v,q), dr(p,q) = 2 (if p,v and ¢ are collinear
then dr,(p,q) = 1) and stop. Otherwise, also extend each inflection edge of 7¢(p, ¢) in both
directions; together with the extensions of the first and last links of mg(p, ¢), this gives the
fixed windows Wy, -, Wj.

3. For each pair of consecutive fixed windows W; and W;;; that do not intersect with each other,
repeat step 4 to compute the intermediate windows connecting the rear of W; and the front

of W,'_|_1 .

58

Figure 3.17: Proof of Lemma 3.18.

4. Initially, let w be the rear of W;. Let W = (ag, b3) be the front of W1 with ay € 7g(p, q).

(a) Assume that w = (a1, b;) with a; on mg(p, ¢). Compute the shortest path 7 (b1, bs).

(b) If there is no inflection edge in 7g(by, by), then H(w, W) is an open hourglass. Compute
an internal common tangent ¢ of the two inward convex chains 7 (a1, az) and 7¢(by, bs).
Note that ¢ connects w and W. Set t to be the window following w and exit step 4.

(c) Else (there are inflection edges in mg (b1, b)) let p be the first inflection edge of 7¢(b1, b2),
then H(w,W) is a closed hourglass: one endpoint p; of p is an apex and p is the
penetration of funnel F(w). Extend p in the direction toward by by ray shooting, which
hits the boundary of P at some point u; also intersect line p with w at some point v.
Set (v, u) to be the window following w. Note that p; is in (v, u) and is a vertex of P
on ¢ (p, q). Set w := (p1, u) and go to step 4(a).

5. Now there are windows wq, - - -, wy connecting p and ¢. Let v; = w; N w;qq, ¢ =1,--- k — 1.
Report 71.(p, q¢) = (p,v1, -+, k-1, ¢q), dr.(p, ¢) = k and stop.

It is easily seen that we perform O(1) ray-shooting and shortest-path queries to compute each
link of 77,(p, q). Therefore, we have:

Lemma 3.19 The time complezity of Algorithm Point-Query s O(k log? n), where k is the number
of links in the reported path.

Now we are ready to give the following lemma, which justifies the correctness of Lemma 3.16
and thus also Algorithm Min-Link-Path given in Section 3.5.

Lemma 3.20 Suppose that two segments s; and sy inside a polygonal region P are not mutually
visible, i.e., the hourglass H(s1,S2) (containing funnels F(s1) and F(s3)) is closed. Let p; be
the penetration of F(s1) and py the penetration of F(sy). Then there exists a minimum-link path
7L (81, S2) between s1 and sy that uses p1 and py as the first and last links.

Proof: To compute 77,(s1,s2), we can view s; and sy as “fictitious windows” and apply the method
for two-point queries. Let p; and py be the apices of F(s;) and F(s3), respectively. If p; = py
then the lemma holds trivially. Otherwise, let ¢ be the first internal common tangent in 7g(p1, p2),
and W be the extension of t. If there is no such ¢, then let W = s3. Since the shortest path from
any point of s; to any point of s, must go through p; and py, s; and W serve as consecutive fized

59

windows in 7 (s1,s2). If H(s;, W) is an open hourglass, then the penetration p; is an internal
common tangent connecting fixed windows s; and W, and thus is chosen as the window following
s1. If H(s1,W) is closed, then as computed by Lemma 3.18, p; is the window following s;. In
either case, p; is chosen as the first link of 77,(s1, s2). Similarly py “extends the farthest” from s,
towards s;. Suppose that 7r(s1, s2) so computed does not use py as the last link, and w and w’
are the last two windows of 77,(s1, s2). Since py extends no worse than the last link w’, py can also
catch w, i.e., replacing w’ with pj still gives a minimum-link path between s; and s,. O

Using Algorithm Point-Query to support two-point queries as needed by Algorithm Min-Link-
Path, we are now able to perform two-polygon queries.

Theorem 3.4 Let M be a connected planar map whose current number of vertices is n. Minimum-
link-path queries between two convex polygons with a total of h vertices that lie in the same region
of M can be performed in time O(logh + klog®n) (where k is the number of links in the reported
path), using a fully dynamic data structure that uses O(n) space and supports updates of M in
O(log? n) time; all bounds are worst-case.

60

Chapter 4

External-Memory Graph Algorithms

4.1 Introduction

Graph-theoretic problems arise in many large-scale computations, including those common in
object-oriented and deductive databases, VLSI design and simulation programs, and geographic
information systems. Often, these problems are too large to fit into main memory, so the in-
put/output (I/O) communication between main memory and external memory (such as disks) be-
comes a major bottleneck. The significance of this bottleneck is increasing as internal computation
gets faster, and especially as parallel computing gains popularity.

Unfortunately, the overwhelming majority of the vast literature on graph algorithms ignores this
bottleneck and simply assumes that data completely fits in main memory (as in the usual RAM
model). Direct applications of the techniques used in these algorithms often do not yield efficient
external-memory algorithms. Our goal is to present a collection of new techniques that take the
I/0O bottleneck into account and lead to the design and analysis of I/O-efficient graph algorithms.

4.1.1 The Computational Model

In contrast to solid state random-access memory, disks have extremely long access times. In order
to amortize this access time over a large amount of data, typical disks read or write large blocks of
contiguous data at once. An increasingly popular approach to further increase the throughput of
I/0O systems is to use a number of independent devices in parallel. In order to model the behavior
of I/O systems, we use the following parameters:

N = # of items in the problem instance

M = # of items that can fit into main memory
B = # of items per disk block

D = # of disks in the system

where M < N and 1 <« DB < M/2. Here we deal with problems defined on graphs, so we also
define

V= 4 of vertices in the input graph
E = # of edges in the input graph.

Note that N = V 4+ E. We assume that E > V. Depending on the size of the data items, typical
values for workstations and file servers in production today are on the order of M = 10° to M = 10®

61

and B = 103. Values of D can range up to 10? in current systems. Large-scale problem instances
can be in the range N = 101% to N = 10'2.

Our measure of performance for external-memory algorithms is the standard notion of I/0O
complexity [122]. We define an input/output operation (or simply I/O for short) to be the process
of simultaneously reading or writing D blocks of data, to or from each of the disks. The total
amount of data transferred in an I/O is thus DB items. The I/O complexity of an algorithm is
simply the number of I/Os it performs. For example, reading all of the input data requires N/DB
I/Os, since we can read DB items in a single I/O.

Our algorithms make extensive use of two fundamental primitives, scanning and sorting. We
therefore introduce the following shorthand notation to represent the I/O complexity of each of

these primitives:
x

DB’

which represents the number of I/Os needed to read z items, and

scan(z) =

z T
sort(z) = DB lognr/B I

which is proportional to the optimal number of I/Os needed to sort z items [87].

4.1.2 Previous Work

Early work on external-memory algorithms concentrated largely on fundamental problems such
as sorting, matrix multiplication, and FFT [2, 87, 122]. The main focus of this early work was
therefore directed at problems that involved permutation at a basic level. Indeed, just the problem
of implementing various classes of permutation has been a central theme in external-memory 1/0O
research [2, 36, 37, 38, 122].

More recently, external-memory research has moved towards solving geometric and graph prob-
lems. For geometric problems, Goodrich et al. [60] study a number of problems in computational
geometry and develop several paradigms for I/O-optimal geometric computations. Further results
in this area have been obtained in [51, 125]. Also, Kanellakis et al. [65] and Ramaswamy and Sub-
ramanian [98, 106] give efficient data structures for performing range searching in external memory.
Very recently, a new data structure called buffer tree and its applications are given in [5, 6], and an
external-memory version of the directed topology tree ([52]) called topology B-tree is given in [17].

There has also been some work on selected graph problems, including the investigations by
Ullman and Yannakakis [117] on transitive closure computations. This work, however, restricts
its attention to problem instances where the set of vertices fits into main memory but the set of
edges does not. Vishkin [121] uses PRAM simulation to facilitate prefetching for various problems,
but without taking blocking issues into account. Also worth noting is recent work [58] on some
graph traversal problems; this work primarily addresses the problem of storing graphs, however,
not in performing specific computations on them. Related work [50] proposes a framework for
studying memory management problems for maintaining connectivity information and paths on
graphs. Other than these papers, we do not know of any previous work on I/O-efficient graph
algorithms.

4.1.3 Our Results in This Chapter

We give a number of techniques for solving a host of graph problems in external memory. They
are based on the following central methods:

62

e PRAM simulation. We give methods for efficiently simulating PRAM computations in exter-
nal memory. Our simulation techniques explore the different flavors of locality in PRAM and
in external-memory computations, and also take advantage of the “geometrically decreasing
size” property common in many PRAM algorithms.

e Deterministic 8-coloring of a cycle—a problem central to list ranking and symmetry breaking
in graph problems. Our methods for solving it go beyond simple PRAM simulation, and may
be of independent interest. In particular, we give techniques to update scattered successor
and predecessor colors as needed after re-coloring a group of nodes without sorting or scanning
the entire list.

Combining these techniques, we are able to derive an I/O-optimal algorithm for list ranking,
which is the most fundamental subroutine used in PRAM computations. We then apply our PRAM
simulation and list-ranking algorithms to a wide variety of fundamental problems, including Euler-
tour computation, expression-tree evaluation, least-common ancestors, connected and biconnected
components, minimum spanning forest, ear decomposition, topological sorting, reachability, graph
drawing, and visibility representation. For all these problems considered, we give the first I/O-
efficient algorithms, most of them being I/O-optimal.

4.1.4 Organization of the Chapter

The rest of this chapter is organized as follows. In Section 4.2 we review the I/O lower bounds
related to our problems. Sections 4.3 and 4.4 are respectively devoted to PRAM simulation and
list ranking. Finally, we give applications of the developed techniques in Section 4.5.

4.2 Review of Lower Bounds: Linear vs. Permutation Times

In order to derive lower bounds for the number of I/Os required to solve a given problem it is
often useful to look at the complexity of the problem in terms of the permutations that may have
to be performed to solve it. In an ordinary RAM, any known permutation of N items can be
produced in O(N) time. In an N processor PRAM; it can be done in constant time. In both cases,
the work is O(XNV), which is no more than it would take us to examine all the input. In external
memory, however, it is not generally possible to perform arbitrary permutations in a linear number
(O(scan(N))) of I/Os. Instead, it is well-known that ©(perm(N)) I/Os are required in the worst
case [2, 122] where

J.N
perm(N) = min {5, sort(N)} .

When M or B is extremely small, N/D = O(B - scan(N)) may be smaller than sort(N). In the
case where B and D are constants, the model is reduced to an ordinary RAM, and, as expected,
permutation can be performed in linear time. However, for typical values in real I/O systems, the
sort(N) term is smaller than the N/D term. If we consider a machine with block size B = 10* and
main memory size M = 10%, for example, then sort(N) > N/D only when N > B-(%)B = 100,004
which is certainly not the case in any real-world applications.

The lower bound Q(perm(N)) holds even in some important cases when we are not required to
perform all N! possible permutations. In [118] (also appearing in [25]) a problem called prozimate
neighbors, which is a significantly-restricted form of permutation, is used to derive a number of
non-trivial lower bounds. The proximate neighbors problem is defined as follows: Initially, we have
N items in external memory, each with a key that is a positive integer & < N/2. Exactly two items

63

have each possible key value k. The problem is to permute the items such that, for every %, both
items with key value k are in the same block.

Lemma 4.1 ([25, 118]) Solving the prozimate neighbors problem requires Q(perm(N)) I/Os in
the worst case.

Corollary 4.1 ([25, 118]) The following problems all have an I/O lower bound of Q(perm(N)):
list ranking, FEuler tours, expression-tree evaluation, and connected components in sparse graphs

(E=0(V)).

Upper bounds of O(sort(N)) for these problems are shown in Sections 4.4 and 4.5, giving optimal
results whenever perm(N) = O(sort(N)). As was mentioned above, this covers all practical I/0O
systems. The key to designing algorithms to match the lower bound of Corollary 4.1 is the fact that
comparison-based sorting can also be performed in ©(sort(N)) I/Os. This suggests that in order
to optimally solve a problem covered by Corollary 4.1 we can use sorting as a subroutine. Note
that this strategy does not work in the ordinary RAM model, where the sorting takes Q(nlogn)
time, while many problems requiring arbitrary permutations can be solved in linear time.

4.3 PRAM Simulation

An intuitive way (but with a weaker computational power) to consider the external-memory com-
putation is to view the main memory as a local window, and the contiguous data blocks on disks
as a tape: first we put the window somewhere on the tape, read in what can be seen from the
window, perform some computations and write them back, and then slide the window and repeat
the process until the computing task is finished. Under this computational scheme, it is desirable
that the computations performed be independent to one another (goal 1), and that the data needed
be as localized as possible (goal 2). An ideal candidate to be used for achieving these goals is the
paradigm of PRAM computations.

In this section, we present some simple yet general techniques for designing I/O efficient algo-
rithms based on the simulation of PRAM algorithms. Observe that PRAM techniques already fulfill
goal 1, and to achieve goal 2 we explore the different flavors of locality in PRAM and in external-
memory computations. We also take advantage of the “geometrically decreasing size” property
common in many PRAM algorithms to obtain I/O-optimal methods. In addition, since we do not
need to simulate inactive processors, the PRAM algorithms we simulate are those described at a
higher level (called the work-time presentation framework [64]) which ignore the more complicated
processor scheduling issues, and thus our resulting I/O algorithms are simple and practical.

We show in subsequent sections how to combine these techniques with more sophisticated
strategies to design efficient external-memory algorithms for a number of graph problems. Related
work on simulating PRAM computations in external memory is done by Cormen [36]. The use of
PRAM simulation for prefetching, without the important consideration of blocking, is explored by
Vishkin [121].

4.3.1 Generic Simulation of a PRAM Algorithm

We begin by considering how to simulate a PRAM algorithm A. Under the work-time presentation
framework, the work performed by A is defined to be the total number of operations used [64]. It
is easy to see that a single step of A with O(NN) work which does not involve any pointer reference
can be simulated by just scanning through the O(N) data items and performing the operations,

using O(scan(N)) I/Os.

64

(a)

for all node i pardo L
cost(i) := val(i) + val(suc(i)) »@_,O_»
(b)
External Memory:
L
ID 1 2 3 4 5
cost
val| e ° ° ° °
suc| o ; 4 ® ®
Y]
98765 19801 78952 10987 89876
Intuitive Solution:
— Local Window L
ID 1 2 3 4 5
___cost
val| e ° ° ° °
suc| e 4 L J [J [J
copy
2 R R A A
permute 98765| 19801| 78952 10987 89876 .
98765(| 19801 78952| 10987 | 89876

Figure 4.1: Example of simulating an O(N)-work single step of a PRAM algorithm A: (a) the
step of A to be simulated; (b) intuitive simulation idea.

A more interesting case occurs when the PRAM step involves pointer references. Without loss
of generality, we assume that each PRAM step does not have indirect memory references, since
they can be removed by expanding the step into O(1) steps. An example of a typical PRAM step
using O(N) operations is shown in Fig. 4.1(a). While this is a local computation for PRAM, it
is not the case for external-memory computation, since the successor of node 7, for each i being
processed, may not currently reside in the main memory. If we just follow these pointers, then we
may have to use O(N) I/Os in the worst case. Our intuitive solution is simple: To process the
node list L on disk (sorted by node ID), we copy L into another list L', “permute” L’ by node ID
according to the ordering given by the successor IDs of L, and align L and L’. Now the successor
of each node in L is available, and we can perform the operations and write the results on L easily
by a linear scan. This process is shown in Fig. 4.1(b). Notice that this intuitive solution needs to
be refined, since the above “permute” step is not directly feasible. To make it work, we actually
do the following. First we copy L into L', which is already sorted by node ID. Then we sort L by
successor ID and align L on top of L’ so that the successor of each node in L is available. We then
perform the operations and write the results on L by a linear scan, and finally we sort L back to its
original ordering by node ID. Since we use only O(1) sorts and scans, this takes O(sort(N)) I/Os.
We summarize this result in the following theorem.

65

Theorem 4.1 Let A be a PRAM algorithm. Then a single step of A using O(N) operations can
be simulated in O(sort(N)) I/Os; if there is no pointer references, then the step can be simulated

in O(scan(N)) 1/0Os.
To simulate an entire algorithm, we merely have to simulate all of its steps.

Corollary 4.2 Let A be a PRAM algorithm that runs in T steps, each using O(N) operations.
Then A can be simulated in O(T - sort(N)) 1/Os.

4.3.2 Reduced Work Simulation for Geometrically Decreasing Computations

Many simple PRAM algorithms can be designed so as to have a “geometrically decreasing size”
property, in that after each iteration or recursion the problem size (and thus the number of opera-
tions used) is reduced by a constant factor. This is a general algorithmic technique commonly used
to derive work-efficient PRAM algorithms. As pointed out by [118], this technique is especially
useful for us, since our technique of Theorem 4.1 already uses O(sort(N)) rather than O(1) I/Os
to simulate a single PRAM step. Without this geometrically decreasing size technique, it is almost
impossible to simulate any powerful PRAM algorithms (i.e., with iterations and/or recursions)
within an O(sort(N)) I/O bound optimal for many problems. We explicitly state the application
of this technique to our PRAM simulation in the following theorem.

Theorem 4.2 Let A be a PRAM algorithm that solves a problem of size N in O(log N) stages,
each in T steps. The problem size is reduced by a constant factor after each stage, and the number
of operations used in each single step is proportional to the problem size at that stage. Then A can
be simulated in external memory in O(T - sort(N)) I/O operations.

Proof: The first stage consists of T steps, each of which can, by Theorem 4.1, be simulated in
O(sort(N)) I/Os. Thus for some constant 0 < « < 1 the recurrence

I(N)=0(T -sort(N))+Z(aN)
characterizes the number of I/Os needed to simulate the algorithm, which is O(T - sort(N)). O

We can make Theorem 4.2 even more powerful by applying the idea to the case of nested
iterations/recursions, as will be presented in subsequent sections.

4.4 List Ranking

List ranking is the most fundamental subroutine used in PRAM computations. Deriving an I/O-
efficient algorithm for list ranking will, combined with our PRAM simulation techniques, enable us
to obtain efficient external-memory algorithms for a wide variety of important problems.

In this section, we demonstrate how the lower bound results of Section 4.2 and the PRAM
simulation techniques of Section 4.3 can be put together to produce an I/O-optimal algorithm
for list ranking. In particular, we give in Section 4.4.3 an efficient deterministic algorithm for 3-
coloring of a cycle, which is central to list ranking and symmetry breaking in graph problems and
our methods for solving it go beyond simple PRAM simulation.

The list ranking problem is as follows. We are given an N-node linked list L stored in external
memory as an (unordered) sequence of nodes, each with a pointer nezt to the successor node in the
list. Our goal is to determine, for each node v of L, the rank of v, which we denote rank(v) and
define as the number of links from v to the end of the list. We assume that there is a dummy node
oo at the end of the list, and thus the rank of the last node in the list is 1. We present algorithms
that use an optimal ©(sort(N)) I/O operations. The lower bound for the problem comes from
Corollary 4.1.

66

4.4.1 An Algorithmic Framework for List Ranking

Our algorithmic framework is adapted from the work of Anderson and Miller [4]. It has also been
used by Cole and Vishkin [33], who developed a deterministic version of Anderson and Miller’s
randomized algorithm.

Initially, we assign rank(v) = 1 for each node v in list L. This can be done in O(scan(N)) I/Os.
We then proceed recursively. First, we produce an independent set of ©@(N) nodes. The details of
how this independent set is produced are what separate our algorithms from each other. Once we
have a large independent set S, we use O(1) sorts and scans to bridge each node v in the set, as
described in [4]. We then recursively solve the problem on the remaining nodes. Finally, we use
O(1) sorts and scans to re-integrate the nodes in S into the final solution.

In order to analyze the I/O-complexity of an algorithm of the type just described, we first
note that once the independent set has been produced, the algorithm uses O(sort(N)) I/Os and
solves a single recursive instance of the problem. If the independent set can also be found in
O(sort(N)) I/Os, then the total number of I/Os done in the nonrecursive parts of the algorithm is
also O(sort(N)).

Since ©(N) nodes are bridged out before recursion, the size of the recursive problem we are
left with is at most a constant fraction of the size of our original problem. Thus, according to
Theorem 4.2, the I/O-complexity of our overall algorithm is O(sort(N)). All that remains is to
demonstrate how an independent set of size ©(NN) can be produced in O(sort(N)) I/Os.

4.4.2 Randomized Independent Set Construction

The simplest way to produce a large independent set is a randomized approach based on that
first proposed by Anderson and Miller [4]. We scan along the input, flipping a fair coin for each
vertex v. We then make two copies of the input, sorting one by vertex and the other by successor.
Scanning down these two sorted lists in step, we produce an independent set consisting of those
vertices whose coins turned up heads but whose successors coins turned up tails. The expected size
of the independent set generated this way is (N — 1)/4.

4.4.3 Deterministic Independent Set Construction via 3-Coloring

Our deterministic approach relies on the fact that the problem of finding an independent set of size
Q(N) in an N-node list L can be reduced to the problem of finding a 3-coloring of the list. We
equate the independent set with the ©(N) nodes colored by the most popular of the three colors.

In this section, we describe an external-memory algorithm for 3-coloring L that performs
O(sort(N)) I/O operations. We make the simplifying assumption here (and also in the next section)
that the block size B satisfies B = O(N/log!!) N) for some fixed integer ¢ > 0. This assumption
is clearly non-restrictive in practice. Furthermore, for simplicity, we restrict the discussion to the
D =1 case of one disk. The load balancing issues that arise with multiple disks are handled with
balancing techniques akin to [86, 122].

The 3-coloring algorithm consists of three phases. Phase 1 sets up an N-coloring. Each remain-
ing phase reduces the number of colors used. Colors and node IDs are represented by integers.

1. In this phase we construct an initial N-coloring of L by assigning a distinct color in the range
[0,---, N — 1] to each node. This phase takes O(scan(N)) I/Os.

2. Recall that B = O(N/log®™ N) for some fixed integer ¢ > 0. In this phase we produce a
(log!*+") N)-coloring.

! The notation log(k) N is defined recursively as follows: log(l) N =log N, and log(H'l) N =log log(i) N, fori > 1.

67

(a)

(c)

Construct a (log(**!) N)-coloring of L with values in the range [0, ..log®*") N — 1]. This
step can be done by performing ¢t+1 times an external-memory variation of deterministic
coin tossing (obtained by simulating the PRAM algorithm of [33]), and takes O((t+1) -
sort(N)) I/Os. We denote with N; the number of nodes with color 7.

Determine the predecessor and successor of each node of L, and create two copies of L,
denoted L; and Lo, in external memory, where the nodes of L store also the predecessor
node, and the nodes of L9 store also the successor node. The nodes of L; are stored
sorted first by color and then by predecessor color. The nodes of Ly are stored sorted first
by color and then by successor color. By sorting, this step can be done with O(sort(N))
I/Os.

Set up a table C' (C?) of (log**!) N)2 pointers to external-memory blocks, where Cl;
(C?;) points to the first block of Ly (L;) storing a node with color i and predecessor

(successor) color j. This step uses O(scan(N) + (log*+!) N)?) 1/0s.

The total number of I/Os performed in this phase is O(t - sort(N) 4 (log®!) N)?),

3. In the final phase, for each 7 = 3, ..,log(t‘H) N — 1, we re-color the nodes with color ¢ by
assigning them a new color in the range [0, 1,2]. This is done as follows:

(a)
(b)

(c)

Determine the predecessor and successor of each node with color 7. This step is carried
out sorting by ID the nodes in Ly and Ly with color 7, and uses O(sort(N;)) I/Os.

Re-color each node of color ¢ with the smallest color in the range [0, 1,2] that is not
currently assigned to its predecessor or successor. This step uses O(scan(N;)) I/Os,
where N; is the number of vertices with color 7 (from the previous phase).

Update the nodes of Ly (L) with color > 7 whose predecessor (successor) has been
recolored. This is done by accessing the affected nodes of Ly and Ly by means of
pointers C} ; and C7, for j > 4, and O(1) sorts. This step uses O(log™ V) N + sort(N;))
I/Os.

The total number of I/Os performed in this phase is

log(t'l'l) N-1
O(log"™V) N + sort(N;))
=0

= O(sort(N) + (logt") N)?2).

The overall time complexity of the 3-coloring algorithm is thus O(# - sort(N) 4 (loglt+!) N)2),
Since ¢ is a constant and B = O(N/log!!) N), we get the following time bound:

Lemma 4.2 The N nodes of a list L can be 3-colored with O(sort(N)) 1/O operations.

Recalling the algorithmic framework for list ranking of Section 4.4.1, we obtain the following

result:

Theorem 4.3 The N nodes of a list L can be ranked with optimal O(sort(N)) I/O operations.

4.5 Applications

In this section we show that the techniques presented in Sections 4.3-4.4 can be used to solve a
variety of fundamental problems on trees, undirected graphs and planar digraphs. We believe that
many more problems are amenable to these techniques.

68

4.5.1 Tree Algorithms

Our results on tree problems are summarized in Table 4.1. Lower bounds are given in Corollary 4.1.

H Problem ‘ Notes ‘ Lower Bound ‘ Upper Bound H
Euler Tour Q(sort(N)) O(sort(N))
Expression Tree Bounded Degree Q(sort(N)) O(sort(N))
Evaluation Operators
Least Common Ancestor | K Queries O((1+ K/N)sort(N))

Table 4.1 I/O-efficient algorithms for problems on trees. The problem size is N =V = E 4 1.

Euler Tours Let T be a tree, and T’ a directed graph obtained from T by replacing each edge
(7,7) of T with two arcs (i, 7) and (j,7). The Euler Tour of T is a directed circuit that traverses
each arc of T’ exactly once. By PRAM simulation, we obtain:

Theorem 4.4 The Euler Tour of an N-node tree can be computed using optimal O(sort(N)) I/0
operations.

Expression Tree Evaluation A general expression tree T is a bounded-degree tree whose
internal nodes are labeled by arbitrary functions with scalar arguments computable in O(1) time.
The wvalue of an internal node is the result of applying its function to the values of its children.
The value of each leaf is a scalar defined in the input. The expression tree evaluation problem is to
determine the values at all internal nodes of T'.

Theorem 4.5 An N-node general expression tree can be evaluated with optimal O(sort(N)) I/Os.

Proof: We give two algorithms; the first one is based on [62] (also appearing in the conference
version [25] of this chapter) and the second one is new.

The first algorithm works as follows. By using Euler Tour and list ranking twice, we compute
the depth and also the preorder numbering of each node. We then sort all nodes into a list first
by nonincreasing depths and then by increasing preorder numbers. Observe that the nodes are
grouped by levels, bottom up, and the nodes in the same level appear left to right. We then keep
two pointers, one to the next node to be computed and the other to the next input value needed.
The two pointers move sequentially through the list of nodes, so all of the nodes in the tree can be
computed with O(scan(N)) additional I/Os.

Our alternative algorithm makes use of the external-memory priority queue based on the
buffer tree [5], where Insert and DeleteMin operations can each be performed using amortized
O(ﬁlogM/B %) 1/Os [5]. We first compute the depth d(v) of each node v by Euler Tour and
list ranking, and then sort all nodes into a list L first by nonincreasing depths and then by node
IDs. The nodes in L are computed sequentially. As long as we obtain the value of a node v, we
generate an item consisting of the value, the parent depth (= d(v) — 1), and the parent ID of v.
The item is inserted into a priority queue which maintains all such items ordered first by parent
depth and then by parent ID. In this way, all children of the current node in L have already been
computed and their values are available by performing consecutive DeleteMin operations on the
priority queue. Since we perform O(N) Insert and Delete Min operations, the total number of I/Os
is O(N - ﬁlogM/B &)= O(sort(N)). O

69

Least Common Ancestors Given a rooted tree T, a least common ancestor query for a given
pair (u,v) of nodes of T is to find a node that is an ancestor of both u and v, and is farthest from
the root. Note that T is not necessarily binary.

Theorem 4.6 Given a rooted tree T with N nodes, one can answer a batch of K least common
ancestor queries on T using O((1 + K/N)sort(N)) I/Os. This also builds an exrternal-memory
search structure with O(D - sort(N)) blocks that answers a single query in O(scan(M/B)) I/Os.
Alternatively, one can answer a batch of K queries using O((1 + K/N)sort(N) - log(pp M) 1/0s.

This also builds an external-memory search structure with O(D - sort(N) - log(pp) MY blocks that
answers a single query in O(1) I/Os.

Proof: The problem can be reduced to the range minima problem using Euler Tour and list
ranking [15]. We construct a search tree S with O(NN/B) leaves, each a block storing B data items.
Tree S is a complete (M/B)-ary tree with O(logy;/g(IN/B)) levels, where each internal node v of
S corresponds to the items in the subtree S, rooted at v. Each internal node v stores two lists
maintaining prefix and suffix minima of the items in the leaves of S,, respectively, and a third list
maintaining M/B items, each a minimum of the leaf items of the subtree rooted at a child of v.
Note that the total size of the prefix (suffix) minima lists of the nodes at the same level is O(N/B)
blocks, so that the total number of blocks used by S is O(% - logrr/g(N/B)) = O(D - sort(N)).

A range minimum query for pair (¢,j) is performed as follows. We first identify the least
common ancestor w of 7 and j in S (by numerical computation, since S is a complete (M/B)-ary
tree), from which we also know the two children w; and ws of w whose subtrees contain ¢ and j.
Suppose that w; is to the left of wy. To obtain the range minimum, we check the suffix minima list
of wq at the position of 7, the prefix minima list of wy at the position of j, and the children minima
list of w at all intermediate positions between w; and wsq, and take their minimum. Since w has at
most M/B children, this takes O(scan(M/B)) 1/Os.

The K batched queries are performed by sorting them first, so that all queries can be performed
by scanning S O(1) times when K < N. If K > N we process the queries in batches of N at a
time. The alternative method is to make S a complete (DB)-ary tree rather than an (AM/B)-ary
tree. O

4.5.2 Algorithms for Undirected Graphs

In this section we consider a set of problems on undirected graphs. Our results are summarized in
Table 4.2. Lower bounds are similar to Corollary 4.1.

H Problem ‘ Notes ‘ Lower Bound ‘ Upper Bound H
Connected Components, O(min{sort(V?),
Biconnected Components, log(V/M) - sort(E)})
Minimum Sparse graphs (E = O(V)) | Q(sort(V)) O(sort(V))

Spanning Forest, and closed under

Ear Decomposition edge contraction
Randomized, O((E/V)sort(V))
with probability
1— exp(—E/log® M) E)

Table 4.2 I/O-efficient algorithms for problems on undirected graphs.

70

Connectivity and Minimum Spanning Forest Let G = (V| E) be an undirected graph. Two
vertices u and v of G are connected if u = v or there exists a path P = (v = z1,zg, ...,z = v) such
that (z;,2i41) € E, for all 1 <4 < k — 1. This is an equivalence relation on V', and partitions V'
into equivalence classes. Each equivalence class V; of V' together with all edges incident on vertices
in V; is a connected component of G. If G is connected, we define an equivalence relation R on
E as follows: eRg if two edges e and ¢ are on a common simple cycle. Each equivalence class
E; partitioned by R together with all vertices that are endpoints of edges of E; is a biconnected
component of G. Let Py be an arbitrary simple cycle of of G. An ear decomposition of G starting
with Py is an ordered partition of the set of edge F = PyU P, U...U Py, such that, foreach 1 <1 < k,
P, is a simple path whose endpoints belong to PoU P, U...UP;_1, but none of whose internal vertices
does. Each simple path F; is called an ear. It is well known that G has an ear decomposition if
and only if it is bridgeless, that is, there exists no edge whose removal disconnects the graph.

Theorem 4.7 Given a graph G with V wvertices and E edges, the connected components, bicon-
nected components, minimum spanning forest, and ear decomposition of G (if it exists) can be

computed using O (min{log(V/M) - sort(E), sort(V?)}) I/Os.

Proof: For connected components and minimum spanning forest, our algorithm is based on that
of Chin et al. [32]. Each iteration performs a constant number of sorts on current edges and one
list ranking to reduce the number of vertices by a constant factor. After O(log(V/M)) iterations
we fit the remaining M vertices to the main memory and solve the problem easily.

For biconnected components, we adapt the PRAM algorithm of Tarjan and Vishkin [116],
which requires generating an arbitrary spanning tree (by our connected component algorithm),
evaluating an expression tree (by Theorem 4.5), and computing connected components of a newly
created graph.

For ear decomposition, we modify the PRAM algorithm of Maon et al. [80], which requires
generating an arbitrary spanning tree (by our connected component algorithm), performing batched
lowest common ancestor queries (by Theorem 4.6), and evaluating a general expression tree (by
Theorem 4.5). O

Observe that all problems in Theorem 4.7 can be solved within the bound of computing mini-
mum spanning forest. For the latter problem, one major bottleneck in the algorithm of Theorem 4.7
is that each iteration reduces by a constant factor only the number of vertices. We can actually do
better than that, decreasing the numbers of both edges and vertices by a constant factor in each
iteration, by using an external-memory variation of the random sampling technique of [66, 74].
The verification step in [66, 74] to check whether an edge forming a cycle is heavy enough to be
removed is carried out by the O((E/V)sort(V))-I/O minimum spanning tree verification method
of [61] (also appearing in [25]) which is based on that of King [70]. This gives the following theorem.

Theorem 4.8 Given a graph G with V wvertices and E edges, the connected components, bicon-
nected components, minimum spanning forest, and ear decomposition of G (if it exists) can be com-
puted by a randomized algorithm using O((E/V)sort(V))) I/Os with probability 1—exp(—E/ log®") E).
For sparse graphs (E = O(V')) this is optimal.

4.5.3 Algorithms for Planar Digraphs

A planar st-digraph is a planar acyclic digraph with exactly one source vertex s and exactly one
sink vertex ¢, which is embedded in the plane such that s and ¢ are on the boundary of the external
face. Planar st-graphs were first introduced by Lempel, Even, and Cederbaum [77] in connection
with a planarity testing algorithm, and have subsequently been used in a host of applications,
dealing with partial orders [68], planar graph embedding [30, 42, 111], graph planarization [91],

71

graph drawing [41, 43], floor planning [123], planar point location [49, 94], visibility [73, 88, 102,
113, 114, 124], motion planning [101], and VLSI layout compaction [123].

In this section, we consider a planar st-digraph G with V' vertices, and recall that G has O(V)
edges. The results in this section are summarized in Table 4.3. Lower bounds are similar to
Corollary 4.1. We obtain the given upper bounds by modifying the PRAM algorithms of Tamassia
and Vitter [115], and applying the list ranking and the PRAM simulation techniques.

H Problem ‘ Notes ‘ Lower Bound ‘ Upper Bound H
Reachability K queries O((1+ K/V)sort(V))
Topological Sorting Q(sort(V)) O(sort(V))

Drawing, and 2V — 5 bends Q(sort(V)) O(sort(V))
Visibility Representation | O(V?) area

Table 4.3 I/O-efficient algorithms for problems on planar st-graphs. Note that E = O(V) for these
graphs.

Reachability and Topological Sorting Given a pair (u,v) of vertices of digraph G, a reacha-
bility query consists of determining whether G has a directed path from u to v.

Theorem 4.9 Given a planar st-digraph G with V' wvertices, one can perform a batch of K reach-
ability queries on G using O((1+ K/V)sort(V)) 1/Os. This also builds an external-memory query
structure with O(V/B) blocks that can support an individual reachability query using O(1) 1/0O
operations.

Corollary 4.3 Given a planar st-digraph G with V vertices, one can compute a topological ordering
of G using O(sort(V')) I/O operations.

Drawing and Visibility Representation A drawing of a graph G maps each vertex of GG into a
point of the plane, and each edge (u, v) of G into a simple open curve between the points associated
with the vertices u and v. A planar drawing has no crossing edges. In a polyline drawing, every
edge is drawn as a polygonal chain. A grid drawing is a polyline drawing such that the vertices
and bends of the edges have integer coordinates. An upward drawing for an acyclic digraph is such
that every edge is drawn as a curve monotonically increasing in the vertical direction. A wistbility
representation I for a directed graph G maps each vertex v of G to a horizontal segment I'(v) and
each edge (u,v) of G to a vertical segment I'(u,v) that has its lower endpoint on I'(u), its upper
endpoint on I'(v), and does not intersect any other horizontal segment.

Theorem 4.10 Given a planar st-digraph G with V wvertices, one can compute a planar upward
polyline grid drawing for G with 2V — 5 bends and O(V?) area, and a visibility representation for
G with integer coordinates and O(V?) area, using O(sort(V)) I/O operations.

72

Chapter 5

Experiments: Practical I/0
Efficiency of Geometric Algorithms

5.1 Introduction

Although there has been an increasing interest in the development of I/O-efficient algorithms in
recent years, most of the developed algorithms, however, are shown to be efficient only in theory,
and their performance in practice is yet to be evaluated. In particular, all such algorithms assume
that the internal computation is free compared to the I/O cost, which also has to be justified in
practice. In this chapter, we establish the practical efficiency of one such algorithm by an extensive
experimental study.

5.1.1 Previous Related Work

As mentioned above, most of the previous work on I/O-efficient computation is theoretical. In
Chapter 4, we have presented a collection of new techniques for designing and analyzing I/O-
efficient graph algorithms, and apply these techniques to a wide variety of specific problems. Other
related theoretical results are reviewed in Section 4.1.2.

For excellent examples of experimental work in computational geometry, see Bentley [11, 12,
13, 14]. As for experimental work on I/O-efficient computation, very recently Vengroff has built
an environment called TPIE for programming external-memory algorithms as he proposed earlier
in [120], and also Vengroff and Vitter [119] have reported some benchmarks of TPIE on sorting and
matrix multiplication. This work, however, is mainly on providing a programming environment and
not on performance comparisons between external-memory algorithms and conventional algorithms.
Also worth noting is the work by Ramaswamy and Kanellakis [97], who study the problem of
indexing a class hierarchy in Object Oriented Databases. Based on the insight of Kanellakis et
al. [65] that the problem is a special form of two-dimensional dynamic range searching in external
memory, they propose a technique called class-division, and show by experiments that in the average
case, class-division performs far less I/Os than the class hierarchy indez technique most popular
today. Their experimental setting is somewhat different from ours, however, in that the numbers
of I/O operations rather than the total running times are measured.

5.1.2 Our Results in This Chapter

We present an extensive experimental study comparing the performance of four algorithms for the
following orthogonal segment intersection problem: given a set of horizontal and vertical line seg-

73

ments in the plane, report all intersecting horizontal-vertical pairs. The problem has important
applications in VLSI layout and graphics, which are large-scale in nature. The algorithms under
evaluation are distribution sweep of Goodrich et al. [60] and three variations of plane sweep [93].
Distribution sweep theoretically has optimal I/O cost [60]. Plane sweep is a well-known and pow-
erful technique in computational geometry, and is optimal for this particular problem in terms
of internal computation [93]. The three variations of plane sweep differ by the sorting methods
(external merge sort [2] vs. internal merge sort) used in the preprocessing phase and the dynamic
data structures (B tree [9, 34, 35] vs. 2-3-4 tree [35]) used in the sweeping phase. We generate the
test data by three programs that use a random number generator while producing some interesting
properties that are predicted by our theoretical analysis. The sizes of the test data range from
250 thousand segments to 2.5 million segments. The experiments provide detailed quantitative
evaluation of the performance of the four algorithms, and the observed behavior of the algorithms
is consistent with their theoretical properties.
The contribution of this chapter can be summarized as follows:

e We have presented the first experimental work comparing the practical performance between
external-memory algorithms and conventional algorithms with large-scale test data.

e We have generated test data with interesting properties that are predicted by our theoretical
analysis. In particular, we give techniques for analyzing the expected number of intersec-
tions and the average number of vertical overlaps among vertical segments in the data sets
generated, which may be of independent interest.

e We have implemented distribution sweep, three variations of plane sweep and external merge
sort under a uniform experimental framework so that some resource usage can be parameter-
ized and various statistic information related to performance can be obtained and analyzed.
The implementations handle all degeneracies and are robust.

e We have presented the first experimental study on the four algorithms for the important or-
thogonal segment intersection problem with large-scale test data, and established the practical
efficiency of distribution sweep.

5.1.3 Organization of the Chapter

The rest of this chapter is organized as follows. In Section 5.2 we overview the four algorithms under
evaluation. Details on the experimental setting are given in Section 5.3. In Section 5.4, we sum-
marize our experimental results in nine charts and give a comparative analysis of the performance
of the four algorithms. Finally, we conclude the chapter in Section 5.5.

5.2 The Algorithms Under Evaluation

The four algorithms considered in this chapter are distribution sweep, denoted Distribution, and
three variations of plane sweep, denoted B-Tree, 234-Tree, and 234-Tree-Core, described next.
To discuss the time complexity, let N be the total number of segments in the given input, K the
number of intersecting pairs that must be reported, and M and B the numbers of segments that
can fit into the main memory and into a page, respectively. Each I/O operation transfers one page
of data.

74

5.2.1 Three Variations of Plane Sweep

The well-known plane sweep paradigm [93] is a powerful technique in computational geometry, and
is optimal for the orthogonal segment intersection problem in terms of internal computation. The
method consists of preprocessing and sweeping phases. In the preprocessing phase, we sort all
endpoints by the y-coordinates in non-decreasing order. In the sweeping phase, we (conceptually)
use a horizontal sweep line to sweep the plane from bottom to top, and use a dynamic data structure,
typically a search tree, to keep the objects currently intersecting the sweep line. Operations (object
insertions/deletions or queries) are performed only when some events are encountered by the sweep
line. In our problem, the objects being maintained are vertical segments, and the events are
the endpoints of all segments. When a bottom endpoint of a vertical segment is encountered, it
is inserted to the data structure; the segment remains intersecting the sweep line until its top
endpoint is encountered, at which time it is deleted from the data structure. When an endpoint of
a horizontal segment s is encountered, we search the data structure to find and report all vertical
segments intersecting s, i.e., those segments whose z-coordinates are contained in the z-interval
spanned by s. The sequence of events during the sweeping process is given by sorting in the
preprocessing phase. Using any dynamic balanced tree, plane sweep takes optimal O(XN log N)
time in terms of internal computation.

Our three variations of plane sweep differ by the sorting methods and the dynamic data struc-
tures used. The first variation, B-Tree, uses external merge sort [2] and a B tree [9, 34, 35]; this is
a direct way to implement plane sweep in secondary memory. The number of I/O operations per-
formed in the first phase is optimal O (% log% %) [2], and in the second phase is O(Nlogg & + &£).
The second variation, 234-Tree, uses external merge sort and a 2-3-4 tree [35], viewing the in-
ternal memory as having an infinite size and letting the virtual memory feature of the OS handle
page faults during the second (sweeping) phase. It has the same I/O cost in the first phase and
O(Nlog N + %) I/O cost in the second phase. Finally, the third variation, 234-Tree-Core, uses
internal merge sort and a 2-3-4 tree, letting the OS handle page faults all the time. The I/O costs in
the first and second phases are O(N log N) and O (N log N + &), respectively. Viewing the internal
memory as virtually having an infinite size is conceptually the simplest, and is actually the most
commonly used strategy today in practice.

5.2.2 Distribution Sweep

Distribution sweep [60] is an external-memory version of plane sweep based on the subdivision
technique used in the “distribution sort” algorithms of [2, 86, 122]. When applied to the orthogonal
segment intersection problem, it works as follows.

In the preprocessing phase, we sort the endpoints of all segments into two lists, one by z and
the other by y. Again we use external merge sort. The list sorted by z is used to locate the medians
which we will use to split the input into L%J vertical strips. The list sorted by 7 is used to perform
the sweep, moving bottom up. Associated with each strip 7, is an active list A; that maintains the
vertical segments inside v; that intersect the horizontal sweep line.

During the sweep, if the bottom endpoint of a vertical segment is encountered, it is inserted
into the active list A; of the strip in which the segment lies, and later it is deleted from A; when
its top endpoint is encountered. When an endpoint of a horizontal segment s is met, we locate the
two strips 7; and 7; containing the two endpoints of s, © <= j, and report all vertical segments
currently in the active lists A;41,..., A;_1. Note that strips 7;41,...,7j-1 are completely spanned
horizontally by s. This reports all vertical segments intersecting s except for those lying in v; and
7v;, which will be processed in the next level of recursion. After the sweep is complete in the top

75

level, we recursively perform the same procedure to each strip 7;. The recursive process continues
until the size of the subproblem falls below M, at which time we simply solve the problem in main
memory.

Based on the above idea, distribution sweep actually uses a “lazy deletion” policy. Each ac-
tive list A; can be viewed as a stack with the topmost block maintained in the internal memory.
Whenever the internal block is full, it is written to the external memory. Now, the top endpoints of
vertical segments become “no action” events, and the deletions are performed during reporting: in
the reporting process, instead of just reporting each vertical segment ¢ in active list A;, we check the
top endpoint of ¢ to see if its deletion time has passed. If so we delete ¢, otherwise we report ¢ and
retain ¢ in 4;. The total I/O cost is O(% log% & + &), which is optimal. Notice that distribution

sweep needs two sortings as opposed to just one sorting in plane sweep.

5.3 Experimental Setting

5.3.1 Generation and Analysis of the Test Data

We use three programs to generate our test data; all of them use a random number generator that
gives a uniform distribution. The programs randomly generate several attributes of a segment such
as its length, position, and whether it is horizontal or vertical, and also maintain certain simple
structures to make the test data interesting.

We must use the random number generator carefully to obtain interesting test data. Observe
that if we just randomly generate segments with lengths uniformly distributed over [0, N], place
them randomly (and uniformly in each dimension) in a square with side length N, and make
horizontal and vertical segments equally likely to occur, then the number K of intersections is
O(N?) (obtained by the analysis given below). In this case, any algorithm has Q(]\g) reporting
I/O cost, which dominates the searching I/O costs in all four algorithms under evaluation. In fact,
the following brute-force algorithm performs equally well: for each segment, check all the other
N — 1 segments for intersections; the I/O cost is O(N - &) = O(%). Certainly this kind of test
data is undesirable.

Our three programs are denoted gen-short, gen-long, and gen-rect, and the data sets gen-
erated are correspondingly denoted data-short, data-long and data-rect. We try to generate
test data with small number of intersections so that the searching I/O cost dominates the report-
ing cost. Also, it is conceivable that the number of vertical overlaps among vertical segments at
a given time decides the tree size in that moment of plane sweep and also the total size of the
active lists at that time of distribution sweep. Thus the number of vertical overlaps may affect the
performance of the four algorithms. Our three programs generate test data with distinct structures
regarding the number of intersections and the number of vertical overlaps. Also, all three programs
decide whether the current segment being generated is horizontal or vertical by tossing a fair coin
(simulated by using the random number generator).

Program gen-short generates short segments whose lengths are uniformly distributed over
[0,v/N]. The segments are randomly placed in an N x N square Q. More specifically, for the left
endpoints of horizontal segments, the distances to the left and bottom sides of) are uniformly
distributed over [0, N — v/N| and over [0, N], respectively. Similarly, for the bottom endpoints of
vertical segments, the distances to the left and bottom sides of @) are uniformly distributed over
[0, N] and over [0, N —+/N], respectively. To simplify the discussion, we assume that the coordinate
of the lower-left corner of @ is (0,0) (in the actual program this coordinate is (—0.5N, —0.5N)).

We now analyze the expected number of horizontal-vertical intersecting pairs in data-short.
Let K be a random variable for the number of such pairs. We can express K by K =3, i<n, i; Kij)

76

where for 1 < 4,5 < N, # j, K;; is a 0-1 random variable defined by

Ko— 1 if segment s; is horizontal, segment s; is vertical, and s; N's; # (
E 0 otherwise.

Clearly, we have
Pr{K;; = 1} = Pr{s; is horizontal and s; is vertical} - Pr{horizontal s; N vertical s; # 0}.

The first term is % . % = i, so let us focus on computing the second term. In the following, s, is
horizontal and s; is vertical. For s; and s; to intersect, the y-coordinate of s; is contained in the
y-interval spanned by s; (denoted by y(s;) € I,(s;)), and similarly for the z-dimension. Define Py
to be the conditional probability Pr{y(s;) € I(s;) | y(b(s;)) = t,|s;| = h}, where y(b(s;)) is the
y-coordinate of the bottom endpoint of s;, and |s;| is the length of s;. For any ¢t € [0, N — \/N] and
h € [0,VN] we have Py = Pr{y(s;) € [t,t+h] | y(b(s;)) =t,|s;| = b} = £, since y(s;) is uniformly
distributed over [0, N]. Let f(¢) be the probability density function of y(b(s;)). Since Py = % is
independent of ¢, we have Pr{y(s;) € I,(s;) | |s;| = h} = [T Py - f(t)dt = Py - [T f(¢)
Moreover, Pr{y(s;) € I,(s;) | |s;| = h,[si] = w} = Pr{y(s;) € I,(s;) | |s;| = h} = %, since
events {y(s;) € I,(s;)} and {|s;| = w} are conditionally independent given |s;| = h. By a smnlar
argument, we have Pr{z(s;) € I.(s;) | |s;| = h,|si| = w} = %, and therefore Pr{s;Ns; # 0 | |s;| =
h,lsi| = w} = % - % Now |s;] is uniformly distributed over [0, v/N], namely,
0 otherwise

) {%ﬁ if0<h<+VN
g _=

is the probability density function of |s;|; similarly for |s;|. Thus

w 1

N ~g(h) - g(w)dhdw = N

+ oo + oo h
Pr{horizontal s; N vertical s; # 0} = / / N

Therefore we have Pr{K;; = 1} = —%. It follows that E[K] = N(N — 1) - E[K;;] = (N — 1).
Figure 5.1 shows the actual numbers of intersections with respect to data size IV, for all three data
sets generated. The observed K values are indeed 7 N for data-short.

Now we proceed to analyze for data-short the average number of vertical overlaps among
vertical segments, that is, the average number of vertical segments “cut” by the horizontal sweep
line I when [is passing through an event. The average is taken over all sweeping events. Notice
that this average number is exactly the average number of items stored in the data structure when
an update/query operation is performed during plane sweep. A related problem has been studied
n [69]. Intuitively, we would estimate this average number to be proportional to the average length
of vertical segments, which is ©(v/N). A rigorous analysis is given next.

Let V be a random variable for the number of vertical segments cut by / for an event. Our goal
is to compute E[V]. We can express V by V=V, + Vo + .-+ Vy, where for 1 < j < N, V; is a
0-1 random variable defined by

1 if segment s; is vertical and s; N1 # ()
V; = .
J 0 otherwise.
Clearly, we have
Pr{V; = 1} = Pr{s, is vertical} - Pr{vertical s; N [# 0}. (5.1)

77

Intersections 350000 B
300000 ~
2 data-short 250000 /
200000 /
] =
150000
S data-long E / //
100000 —
50000 {%L/!
data-rect 3 |
0 T T T T | T T T T T T T T T T T T T T T T
| X-axis: # segments (x 1000) I 0 500 1000 1500 2000 2500

Figure 5.1: The actual numbers of intersections with respect to the number of segments in data
sets data-short, data-long and data-rect.

The first term is %, so let us compute the second term. In the following s; is vertical. If y(I) were
uniformly distributed over [0, N], then letting [play the role of a horizontal segment s; and applying
the p1ev10us method for E[K], we would have Pr{s; NI # 0 | |s;| = h} = Pr{y(l) € I,(sj) | |s;| =
h} = N? and Pr{V; = 1} could be computed accordingly. But this is not the case.

Recall that the positions of [depend on the positions of the events. Let the probability density

function of y(I) be defined by

kl(U) if0§u<\/ﬁ
() =) F2(w) EVN<u<N-VN
W= haw) N - VN <u<N

0 else.

If there were only horizontal segments, then we would have ky(u) = ky(u) = k3(u) = 7. Now
consider including also the vertical segments. There is no bottom endpoint ¢ with y(q) € (N
VN, NJ, so k3(u) < % Also, for a top endpoint ¢ to have y(¢) = u for some u € [0,v/N) (e g.,
u = %\/ﬁ), the length of the corresponding vertical segment must not exceed u, while there is
no such restriction on a top endpoint with y-coordinate in [v/N, N — /N]. Therefore we have
k1(u) < % and kg(u) > 3. To compute Pr{V; = 1}, we proceed in a different way.

Define P to be the conditional probability Pr{s; N1 # 0 | y(I) = u,|s;| = h}. By the fact that
y(b(s;)) is uniformly distributed over [0, N —+/N] and the analysis shown in Fig. 5.2, we have that
P = N—}i/ﬁ for VN < u < N — /N (see Fig. 5.2(b)) and P = ™l g5 0 < 4 < /N (see

\/_
Fig. 5.2(a)). As for N — /N < u < N (see Fig. 5.2(c)), note that P = \/— if h >tand P=0if

h < t, and thus P = —*"_ where len = max{h —t,0} = max{h — u + N VN, 0}. In summary,

N—V/N
we have
m‘“{\’;i} df p, if0<u< VN
p def h__dfp if VN<u<N-+vVN

PEPsinl#0 | y(l)=u,|s;|=h} = N-vN

max{h]\;t-}-\]/\f_\/_o}def » fN—VN<u<N

0 else.

78

@ 0 ® o © o
) =
(Wh<u 1 | yh-u
2)u<h N- N IE h /t=u— (NN
L= | NN T
) . u
;o hoo @S5
JN—— I @ |1
Y JINTE S ! Mh=t \!
Ih | u | (2)h<t |
0 w 0 . 0
§ intersectsl § intersectsl § intersectsl
= [u-h, dif hsu =y(b(s)) Ufu-h,y =h>t and
=YCEI o, Titu<n y(0(§)) O IN /R (-9, N /K]

= y(b(S‘f)) O[u-min{u, b}, u]

Figure 5.2: Computing Pr{s; N1 # 0 | y(I) = u,|s;| = h} for data-short: (a) 0 < u < V'N; (b)
VN <u<N - +/N; (¢) N—vN<u<N.

Observe that min{u, h} < h and that max{h —u 4+ N — v/N,0} < h for u > N — /N, so we
have P < \/— for u € [0, N]. Recall that the probability density function of |s;| is g(h) given

before. Let P denote the probability Pr{vertical s; N 1 # (}. Then

P = /+°° P k(u) g(h) dudh

— 00 — 00

1

VN N 1 VN p 1 N 1
/0 /0 N_\/Nk(u)\/ﬁdudh:/o 7N—\/N\/—N(/o k(u)du) dh=3 =,

where the last equality follows from the fact that févk(u)du = 1. Also,

IN

P - /+°° " P k(w) g(h) dh du

— 00 — 00

VN +oo N-V/N
_ / Py -k (u) g(h) dh du+ / Py - a(u) g(h) dh du
0 VN

— 00 — 00

N +o00
+/N\/_ Py - ks (u) g(h) dh du

/Nf/ Ll hguol 1 VN-
N — \/_N\/_ T2YN-1 VN

where the inequality follows from that fact that the first and the third additive terms are both
non-negative and that ko(u) > % Now we have lower and upper bounds for P, and recall from

equation (5.1) that Pr{V; = 1} = 1 . P. 1t follows that E[V] = N - E[V] < 1VN(VN) =

vVN-1
1\/N_|_ + 4(\/—) and also E[V] > l N(\/@_f) = l N — i (\/— Ty that is, E[V] =

1\/_ N+0(1) ~ . It is interesting to see that 1\/_ can be interpreted as the product of the
probability of a segment being vertical (1) and the average length of vertical segments (iﬁ)
Figure 5.3 shows the actual values of the average number of vertical overlaps with respect to data
size N, for all three data sets generated. We also compare for data-short the actual values and
the analyzed values in Table 5.1, which shows that the observed values are indeed %\/ﬁ

79

N : # segments (x10?) 250 500 1000 1500 2000 2500
Actual value 125.23 | 176.74 | 249.98 | 306.40 | 353.58 | 395.60
%\/N (~ E[V]) 125 176.78 | 250 | 306.19 | 353.55 | 395.28

Table 5.1 The actual and analyzed values of the average number of vertical overlaps in data set
data-short.

550000.00
500000.00
450000.00
+= data-short 400000.00
350000.00
300000.00

250000.00
S data-long 200000.00

Overlaps

/

T
-~

150000.00
100000.00

50000.00 Il
0.00 L s e e e B e B B B e S e e e

500 1000 1500 2000 2500

data-rect

o

‘ X-axis: # segments (x 1000) |

Figure 5.3: The actual values of the average number of vertical overlaps with respect to the
number of segments in data sets data-short, data-long and data-rect.

Program gen-long generates short as well as long segments while keeping the number of inter-
sections small. For a horizontal segment, the length is assigned v/N (short segment); for a vertical
segment, the program tosses a coin, giving length v N (short segment) if the outcome is a head and
N (long segment) otherwise. The horizontal and vertical short segments are randomly placed in
the N X N sqaure () in the same way as described in gen-short. As for vertical long segments, the
bottom endpoints are placed randomly in an N X N square @’ whose lower-right corner coincides
with the lower-left corner of), such that the distances from the bottom endpoints to the left
and bottom sides of Q" are both uniformly distributed over [0, N]. Thus we have about %N short
horizontal segments, iN short vertical segments, and iN long vertical segments which cause no
intersections. Using similar analysis methods as given before, we have that E[K] = (N — 1) and
E[V] = ©(N); the latter bound shows that E[V] is asymptotically proportional to the length of
the long vertical segments. The observed K values of data-long are indeed $N (see Fig. 5.1), and
the observed values of the average number of vertical overlaps are also £ N (see Fig. 5.3).

In program gen-rect, we generate horizontal and vertical segments with lengths uniformly
distributed over [20,60] and over [0,2N], respectively. The left endpoints of horizontal segments
are randomly placed inside an 80N x N rectangle R (with horizontal side length 80N), such that the
distances to the left and bottom sides of R are uniformly distributed over [0, 80N] and over [0, N],
respectively. The vertical segments are placed as follows: in the z-direction, the distance between
the left side of R and the i-th vertical segment is (: — 1) x 160, ¢ = 1,2, -+ in the y-direction,
the distances from the bottom endpoints to the bottom side of R are uniformly distributed over
[0, N]. It is easily seen that each horizontal segment can intersect at most one vertical segment, so
that K = O(N). Using similar analysis methods as given before, we have that E[K] = ©(N) and
also E[V] = ©O(N). Again the latter bound shows that E[V] is asymptotically proportional to the

80

LN,

average length of vertical segments. Figures 5.1 and 5.3 show that the actual K values are ;g

and the actual values of the average number of vertical overlaps are ﬁN.

5.3.2 Computing Environment and Performance Measures

We perform the experiments on a Sun Sparc-10 workstation, which is running under Solaris 2.4
and is a multi-user distributed system. The main memory size is 32Mb and one page is of size 4Kb.
Our performance measures are running time, number of I/O operations performed (i.e., number of
pages read and written by the process), and number of page faults occurred.

Notice that the running time is our ultimate concern. Unlike previous experimental work, the
CPU time does not correctly reflect the performance of the algorithms we want to measure, since
our main concern is the amount of time in which the CPU is sleeping waiting for the I/O or page
faults. To overcome the difficulty, we perform all experiments by running the processes in the real-
time class with the highest priority and measure the elapsed time. Also, the secondary memory
used is the local disk so that the performance is not affected by the network file servers.

We are surprised to find that the system does not fully support performance statistic informa-
tion. For example, it is claimed that user commands time and timex give CPU and elapsed times
as well as numbers of [/O and page faults, etc., but it turns out that only the information regarding
times are available. By using a system call in our program to retrieve the information in the /proc
file system, we are able to obtain the number of page faults that require physical I/O’s, yet the
numbers of pages read and written by the process are still unavailable. Therefore, we also keep
track of the numbers of times the read and write system calls are executed, where each time the
size of the data being transferred is one page by our implementation.

We implement the algorithms so that the page size and the amount of main memory used
can be parameterized. We set the page size to be 4Kb, to be consistent with the system we are
using. As for the main memory size, it is surprising that the main memory size available for use
is typically much smaller than what we thought. When we run Distribution on data-long of
1.5 x 10° segments with various sizes of main memory used (see Fig. 5.4), in theory we would expect
that using more main memory results in a better performance according to the I/O cost bound
O(% log% % + %), but the experiments show that using 4Mb gives the best performance (average

running time 47.64 minutes), and using 20Mb gives a significantly worse performance (average
running time 271.97 minutes)! Going from 1Mb to 4Mb, the number of I/O operations slightly
decreases, and the number of page faults increases slightly vet negligibly; the net effect is to make
the running time decrease slightly (see Fig. 5.4). Going from 4Mb to 20Mb, the number of I/O
operations again decreases only slightly, but the number of page faults increases significantly, thus
resulting in a much worse performance (see Fig. 5.4). This is actually a system issue. Using the
top user command, we see that the “real” main memory size in the system configuration is only
26Mb rather than 32Mb and that processes (including their text, data, and stack portions) are
never fully loaded into the main memory. The process loading behavior is decided by the OS and
the user has no control over it. In the following, all the algorithms are running with the parameters
of the main memory size set to 4Mb.

5.4 Analysis of the Experimental Results

Algorithms Distribution, B-Tree, 234-Tree, and 234-Tree-Core have been executed on data
sets data-short, data-long, and data-rect, with data sizes ranging from 250 thousand segments
to 2.5 million segments. While running times and numbers of page faults may differ between runs of

81

()
280.00
260.00
240.00
220.00
VaryMem: time (mins) 200.00
180.00
160.00
140.00
120.00
100.00
80.00
60.00
40.00
20.00
000 T T T T T T T T T T T T T T T

N

o
I
[e¥]

12 16 20

(b)

250000 é é é

225000

200000
VaryMem: 1/O 175000

150000
125000
100000

75000

50000
25000

vl b b b b b b b L

0 T T T T T T T T T T T T T T T

o
A
o

12 16 20

(©

1200000
1100000
1000000
900000
800000
700000
600000
500000
400000
300000
200000
100000

0 T T T T T T T T T T T T T T T

VaryMem: fault

\

o
5
©

12 16 20

* X-axis: size of the main memory used (Mb)

Figure 5.4: Running Distribution on data set data-long of 1.5 x 10° segments with various
sizes of the main memory used: (a) average running times in minutes; (b) exact numbers of I/O
operations; (c) average numbers of page faults.

82

the same example, the numbers of I/O operations are always the same. We run each example three
times, and find that the variation among runs is at most 5%. More importantly, these differences
among runs do not affect the performance ranking of the four algorithms, that is, the slowest
run of a higher-ranked algorithm is still faster than the fastest run of a lower-ranked algorithm.
Figures 5.5-5.7 show the corresponding values of average running times, exact numbers of I/O
operations, and average numbers of page faults of the four algorithms.

Our experimental results show that while the performance of the three variations of plane sweep
depends heavily on the average number of vertical overlaps, the performance of distribution sweep
is both steady and efficient. Also, distribution sweep does not require a large amount of main
memory to perform well: using 4Mb is enough. We make more detailed observations as follows:

234-Tree-Core performs the best for small input (N = 250 x 103) in all three data sets (see
Figs. 5.5-5.7), but as input size grows, the performance becomes considerably worse, and up
to N = 10° its running times are already out of comparison.

Consider data set data-short (see Fig. 5.5). Excluding 234-Tree-Core, 234-Tree always
runs the fastest and Distribution always runs the slowliest. This can be explained by the
small numbers of vertical overlaps which results in small tree sizes that still fit into the main
memory. Also, Distribution performs two sortings, while all the others perform only one
sorting.

For data set data-long (see Fig. 5.6), Distribution runs much faster than all the others for
N > 1.5 x 108, 234-Tree, following 234-Tree-Core after N > 10, is out of comparison for
its running times and numbers of page faults after N > 1.7 x 105. The running times and
numbers of I/O operations of B-Tree are still more or less linear, and are always worse than
those of Distribution.

For data set data-rec (see Fig. 5.7) with N > 10°, Distribution performs the fastest, and
the running times of the four algorithms differ significantly. For example, for N = 1.37 x 10°
and on average, Distribution runs for 45.29 minutes, B-Tree runs for 74.54 minutes, but
234-Tree runs for more than 10.5 hours. Also, for N = 2.5 x 106, Distribution always runs
for less than 1.5 hours, but B-Tree always runs for more than 8.5 hours.

For all three data sets, 234-Tree and 234-Tree-Core always have small numbers of I/O
operations (see Figs. 5.5(b), 5.6(b), and 5.7(b)). This is because in the sweeping phase both
of them only perform read for reading the input once and write for writing the output
once, and all other I/O activities are page faults caused by the assumption of an infinite-size
virtual memory. Also, Distribution always has much less I/O operations than B-Tree (see
Figs. 5.5(b), 5.6(b), and 5.7(b)). Recall that the I/O cost bounds for Distribution and
B-Tree are O(% log% X+ &) and O(Nlogg & + &), respectively. With the parameters of
the main memory size set to 4Mb, the two logarithmic terms in these bounds are almost the

same, and it is the % term that makes the difference significant.

Page faults seem to be more time-consuming than I/O operations (see Figs. 5.5-5.7). This is
because the number of I/O operations is obtained by counting the number of times the read
and write system calls are executed, and thus some of them might be executed for pages
that are still residing in main memory (i.e., in the system buffer cache), while the number
of page faults only counts for those that actually require physical I/O’s. We hope that the
actual number of I/O operations can be available by a better system support in the future.

83

(@)

240.00
220.00
200.00
180.00
& Distribution 160.00
140.00
120.00
= B-Tree 100.00
80.00
60.00
© 234-Tree 40.00

data-short: time (mins)

N
o
o
)

|

OOO T T T | T T T T | T T T T T T T T T T T T
234-Tree-Core

o
ol
S
S
=
o
S
S
=
a
S
S
N
o
S
S
N
al
S
<]

(b)

7000000
data-short: 1/0 6500000
6000000
5500000
5000000
4500000
4000000
3500000
= B-Tree 3000000
2500000
2000000
1500000
“* 234-Tree 1000000

500000

@ Distribution

e

234-Tree-Core

o
a
o
s}
=
o
S
)
=
a
o
S
N
o
S
s}
)
a
o
)

(©)

data-short: fault 1100000
1000000

900000
& Distribution 800000

700000
600000
= B-Tree 500000
400000
300000
© 234-Tree 200000

100000
0 T

vl b s b b b b

234-Tree-Core

o
3
o
S
=
o
S
o
=
3
S
o
N
o
o
<]
N
al
S
o

* X-axis: # segments (x 1000)

Figure 5.5: The results for the algorithms running on data set data-short: (a) average running
times in minutes; (b) exact numbers of I/O operations; (c) average numbers of page faults. We run
234-Tree-Core only up to N = 10 since at this point it already takes time much longer than the
others even at N = 2.5 x 10°.

84

(@)

data-long: time (mins) 300.00

270.00

240.00
@ Distribution

210.00

180.00

150.00
= B-Tree

120.00

90.00

= 234-Tree 60.00
30.00

N\

000 T T T [T T T T [T T T T [T T T T [T T T T
234-Tree-Core 0 500 1000 1500 2000 2500

(b)

12000000
11000000
10000000
& Distribution 9000000
8000000
7000000
6000000
5000000
4000000

3000000
© 234-Tree 2000000

data-long: 1/0

= B-Tree

1000000

0 T e —————— e

N
s

234-Tree-Core

o
qn
o
S
=
o
o
S
=
1
o
S
N
o
o
S
N
a1
S
o

(©

1300000
1200000
1100000
1000000
900000
800000
700000
= B-Tree 600000
500000
400000
300000
200000
100000
0 T

data-long: fault

& Distribution

© 234-Tree

o e

234-Tree-Core

o
o
o)
S
=
o
S
S
=
o
=]
S
N
o
S
=]
N
a
=]
S

* X-axis: # segments (x 1000)

Figure 5.6: The results for the algorithms running on data set data-long: (a) average running
times in minutes; (b) exact numbers of I/O operations; (c) average numbers of page faults. We run
234-Tree-Core only up to N = 10% and 234-Tree only up to N = 1.7 x 10° since at these points
they already take times much longer than the others even at N = 2.5 x 106.

85

(@)

700.00
650.00
600.00
550.00
500.00
450.00
400.00
350.00
300.00
250.00
200.00
150.00
100.00

50.00

data-rect: time (mins)

& Distribution

= B-Tree

© 234-Tree

o
o
)

234-Tree-Core

o
a
=]
S
=
o
S
=]
=
a
=]
S
N
=]
S
S
N
a1
=]
S

(b)

data-rect: /O 12000000
11000000
10000000
& Distribution 9000000
8000000
7000000
6000000
5000000
4000000
3000000
= 234-Tree 2000000

1000000

e —— e S S

= B-Tree

234-Tree-Core

o
o
o
S
=
o
S
S
=
a1
=]
S
N
(=]
S
S
N
a
o
S

(©

data-rect: fault 3000000

2700000
2400000

& Distribution

2100000
1800000

1500000
1200000

= B-Tree

900000
© 234-Tree 600000
300000

0

|lll| NN NN NN NN NS ENNINNEE NN

234-Tree-Core

o

500 1000 1500 2000 2500

* X-axis: # segments (x 1000)

Figure 5.7: The results for the algorithms running on data set data-rect: (a) average running
times in minutes; (b) exact numbers of I/O operations; (c) average numbers of page faults. We run
234-Tree-Core only up to N = 1.1 x 10° and 234-Tree only up to N = 1.37 x 10 since at these
points they already take times much longer than the others even at N = 2.5 x 106.

86

5.5 Conclusion

We have presented an experimental study comparing the performance of four algorithms for the
orthogonal segment intersection problem. The observed behavior of the algorithms shows that the
performance of distribution sweep is both steady and efficient. Also, it does not require a large
amount of main memory to perform well. In addition, it is shown that the performance resulting
from the strategy of letting the OS handle page faults and not explicitly considering the I/O cost
is very undesirable. We conclude that one should make a full control of the I/O behavior of the
program to obtain a good performance guarantee.

87

Bibliography

[1] P. K. Agarwal and M. Sharir. Applications of a new partition scheme. Discrete Comput.
Geom., 9:11-38, 1993.

[2] Alok Aggarwal and Jeffrey S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116-1127, 1988.

[3] Nancy M. Amato. An optimal algorithm for finding the separation of simple polygons. In Proc.
3rd Workshop Algorithms Data Struct., volume 709 of Lecture Notes in Computer Science,
pages 48-59. Springer-Verlag, 1993.

[4] R. J. Anderson and G. L. Miller. A simple randomized parallel algorithm for list-ranking.
Info. Proc. Letters, 33(5):269-273, 1990.

[5] L. Arge. The buffer tree: A new technique for optimal I/O-algorithms. In Proc. Workshop
on Algorithms and Data Structures (to appear), 1995.

[6] L. Arge, D. E. Vengroff, and J. S. Vitter. External-memory algorithms for processing line
segments in geographic information systems. In Proc. European Symp. Algorithms (to appear),
1995.

[7] E. M. Arkin, J. S. B. Mitchell, and S. Suri. Optimal link path queries in a simple polygon.
In Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms, pages 269-279, 1992.

[8] H. Baumgarten, H. Jung, and K. Mehlhorn. Dynamic point location in general subdivisions.
In Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms, pages 250-258, 1992.

[9] R. Bayer and E. McCreight. Organization of large ordered indexes. Acta Inform., 1:173-189,
1972.

[10] S. W. Bent, D. D. Sleator, and R. E. Tarjan. Biased search trees. STAM J. Comput., 14:545—
568, 1985.

[11] J. L. Bentley. Experiments on traveling salesman heuristics. In Proc. 1st ACM-SIAM Sympos.
Discrete Algorithms, pages 91-99, 1990.

[12] J. L. Bentley. K-d trees for semidynamic point sets. In Proc. 6th Annu. ACM Sympos.
Comput. Geom., pages 187-197, 1990.

[13] J. L. Bentley. Tools for experiments on algorithms. In Proc. CMU 25th Anniversary Symp.,
1990.

[14] J. L. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA J. Comput.,
4(4):387-411, 1992.

[15] O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. Technical report,
Institue for Advanced Computer Studies, Univ. of Maryland, College Park, 1990.

[16] G. Bilardi and F. P. Preparata. Probabilistic analysis of a new geometric searching technique.
unpublished manuscript, 1981.

88

[17] P. Callahan, M. T. Goodrich, and K. Ramaiyer. Topology B-trees and their applications. In
Proc. Workshop on Algorithms and Data Structures (to appear), 1995.

[18] V. Chandru, S. K. Ghosh, A. Maheshwari, V. T. Rajan, and S. Saluja. NC-algorithms for
minimum link path and related problems. Technical Report CS-90/3, TATA inst., Bombay,
India, 1990.

[19] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6:485—
524, 1991.

[20] B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions.

J. ACM, 34:1-27, 1987.

[21] B. Chazelle and L. J. Guibas. Visibility and intersection problems in plane geometry. Discrete
Comput. Geom., 4:551-581, 19809.

[22] S. W. Cheng and R. Janardan. Space-efficient ray shooting and intersection searching: al-
gorithms, dynamization and applications. In Proc. 2nd ACM-SIAM Sympos. Discrete Algo-
rithms, pages 7-16, 1991.

[23] S. W. Cheng and R. Janardan. New results on dynamic planar point location. STAM J.
Comput., 21:972-999, 1992.

[24] Y.-J. Chiang. Experiments on the practical I/O efficiency of geometric algorithms: Distri-
bution sweep vs. plane sweep. In Proc. Workshop on Algorithms and Data Structures (to
appear), 1995.

[25] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S. Vitter.
External-memory graph algorithms. In Proc. 6th ACM-SIAM Symp. on Discrete Algorithms,
pages 139-149, 1995.

[26] Y.-J. Chiang, F. P. Preparata, and R. Tamassia. A unified approach to dynamic point
location, ray shooting, and shortest paths in planar maps. SIAM J. Comput., to appear.
Prelim. version: In Proc. jth ACM-SIAM Sympos. Discrete Algorithms, pages 44-53, 1993.

[27] Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry. Proc. IEEE,
80(9):1412-1434, September 1992.

[28] Y.-J. Chiang and R. Tamassia. Dynamization of the trapezoid method for planar point
location in monotone subdivisions. Internat. J. Comput. Geom. Appl., 2(3):311-333, 1992.
Prelim. version: In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 61-70, 1991.

[29] Y.-J. Chiang and R. Tamassia. Optimal shortest path and minimum-link path queries between
two convex polygons inside a simple polygonal obstacle. Internat. J. Comput. Geom. Appl.,
1995. Prelim. version: In Proc. 2nd Annu. European Sympos. Algorithms (ESA °94), volume
855 of Lecture Notes in Computer Science, pages 266—-277. Springer-Verlag, 1994.

[30] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding planar
graphs using PQ-trees. J. Comput. Syst. Sci., 30(1):54-76, 1985.

31] F. Chin and C. A. Wang. Optimal algorithms for the intersection and the minimum distance
g g
problems between planar polygons. IEEE Trans. Comput., C-32(12):1203-1207, 1983.

[32] F. Y. Chin, J. Lam, and I. Chen. Efficient parallel algorithms for some graph problems.
Comm. of the ACM, 25(9):659-665, 1982.

[33] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal list-ranking.
Information and Control, 70(1):32-53, 1986.

[34] D. Comer. The ubiquitous B-tree. ACM Comput. Surv., 11:121-137, 1979.
[35] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press,

89

Cambridge, Mass., 1990.

[36] Thomas H. Cormen. Virtual Memory for Data Parallel Computing. PhD thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1992.

[37] Thomas H. Cormen. Fast permuting in disk arrays. Journal of Parallel and Distributed
Computing, 17(1-2):41-57, Jan./Feb. 1993.

[38] Thomas H. Cormen, Thomas Sundquist, and Leonard F. Wisniewski. Asymptotically tight
bounds for performing BMMC permutations on parallel disk systems. Technical Report PCS-
TR94-223, Dartmouth College Dept. of Computer Science, July 1994.

[39] M. de Berg. On rectilinear link distance. Comput. Geom. Theory Appl., 1(1):13-34, July
1991.

[40] M. de Berg, M. van Kreveld, B. J. Nilsson, and M. H. Overmars. Finding shortest paths
in the presence of orthogonal obstacles using a combined L; and link metric. In Proc. 2nd
Scand. Workshop Algorithm Theory, volume 447 of Lecture Notes in Computer Science, pages
213-224. Springer-Verlag, 1990.

[41] G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs.
Theoret. Comput. Sci., 61:175-198, 1988.

[42] G. Di Battista and R. Tamassia. Incremental planarity testing. In Proc. 80th Annu. IEEE
Sympos. Found. Comput. Sci., pages 436-441, 1989.

[43] G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry display of
planar upward drawings. Discrete Comput. Geom., 7:381-401, 1992.

[44] H. N. Djidjev, A. Lingas, and J.-R. Sack. An O(nlogn) algorithm for computing the link
center of a simple polygon. Discrete Comput. Geom., 8:131-152, 1992.

[45] D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed polyhedra
— a unified approach. In Proc. 17th Internat. Colloq. Automata Lang. Program., volume 443
of Lecture Notes in Computer Science, pages 400-413. Springer-Verlag, 1990.

[46] D. P. Dobkin and R. J. Lipton. Multidimensional searching problems. SIAM J. Comput.,
5:181-186, 1976.

[47] M. Edahiro, I. Kokubo, and Ta. Asano. A new point-location algorithm and its practical
efficiency: comparison with existing algorithms. ACM Trans. Graph., 3:86-109, 1984.

[48] H. Edelsbrunner. Computing the extreme distances between two convex polygons. J. Algo-
rithms, 6:213-224, 1985.

[49] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone subdivi-
sion. SIAM J. Comput., 15:317-340, 1986.

[50] Esteban Feuerstein and Alberto Marchetti-Spaccamela. Memory paging for connectivity and
path problems in graphs. In Proc. Int. Symp. on Algorithms and Comp., 1993.

[51] P. G. Franciosa and M. Talamo. Orders, implicit k-sets representation and fast halfplane
searching. In Proc. Workshop on Orders, Algorithms and Applications (ORDAL’94), pages
117-127, 1994.

[52] G. N. Frederickson. A data structure for dynamically maintaining rooted trees. In Proc.
ACM-SIAM Symp. on Discrete Algorithms, pages 175-184, 1993.

[63] O. Fries. Zerlegung einer planaren Unterteilung der Ebene und ihre Anwendungen. M.S.
thesis, Inst. Angew. Math. Inform., Univ. Saarlandes, Saarbriicken, West Germany, 1985.

[64] O. Fries, K. Mehlhorn, and S. Naher. Dynamization of geometric data structures. In Proc.

90

1st Annu. ACM Sympos. Comput. Geom., pages 168-176, 1985.

[55] S. K. Ghosh. Computing visibility polygon from a convex set and related problems. J.
Algorithms, 12:75-95, 1991.

[56] S. K. Ghosh and A. Maheshwari. Parallel algorithms for all minimum link paths and link
center problems. In Proc. 8rd Scand. Workshop Algorithm Theory, volume 621 of Lecture
Notes in Computer Science, pages 106-117. Springer-Verlag, 1992.

[67] M. Goodrich and R. Tamassia. Dynamic trees and dynamic point location. In Proc. 28rd
Annu. ACM Sympos. Theory Comput., pages 523-533, 1991.

[58] M. T. Goodrich, M. H. Nodine, and J. S. Vitter. Blocking for external graph searching. In
Proc. ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Sys., pages 222—
232, 1993.

[659] M. T. Goodrich and R. Tamassia. Dynamic ray shooting and shortest paths via balanced
geodesic triangulations. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 318-327,
1993.

[60] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory computational
geometry. In IEEE Foundations of Comp. Sci., pages 714-723, 1993.

[61] M. T. Goodrich, D. E. Vengroff, and J. S. Vitter. Personal communication, 1994.
[62] E. F. Grove. Personal communication, 1994.

[63] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. J.
Comput. Syst. Sci., 39:126-152, 1989.

[64] J. JaJ4. An Introduction to Parallel Algorithms. Addison Wesley, New York, NY, 1992.

[65] P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter. Indexing for data models
with constraints and classes. In Proc. ACM Symp. on Principles of Database Sys., pages
233-243, 1993.

[66] D. R. Karger. Global min-cuts in RNC and other ramifications of a simple mincut algorithm.
In Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, pages 21-30, 1993.

[67] Y. Ke. An efficient algorithm for link-distance problems. In Proc. 5th Annu. ACM Sympos.
Comput. Geom., pages 69-78, 1989.

[68] D. Kelly and I. Rival. Planar lattices. Canad. J. Math., 27(3):636-665, 1975.

[69] C. M. Kenyon-Mathieu and J. S. Vitter. The maximum size of dynamic data structures.
SIAM J. Comput., 20:807-823, 1991.

[70] V. King. A simpler minimum spanning tree verification algorithm. In Proc. Workshop on
Algorithms and Data Structures (to appear), 1995.

[71] D. G. Kirkpatrick. Efficient computation of continuous skeletons. In Proc. 20th Annu. IEEE
Sympos. Found. Comput. Sci., pages 18-27, 1979.

[72] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12:28-35, 1983.

[73] D. G. Kirkpatrick and S. K. Wismath. Weighted visibility graphs of bars and related flow

problems. In Proc. 1st Workshop Algorithms Data Struct., volume 382 of Lecture Notes in
Computer Science, pages 325-334. Springer-Verlag, 1989.

[74] P. Klein and R.E. Tarjan. A randomized linear-time algorithm for finding minimum spanning
trees. In Proc. ACM Symp. on Theory of Computing, 1994.

[75] D.T. Lee and F. P. Preparata. Location of a point in a planar subdivision and its applications.
SIAM J. Comput., 6:594-606, 1977.

91

[76] D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear barriers.
Networks, 14:393-410, 1984.

[77] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs. In
Theory of Graphs, Int. Symp. (Rome, 1966), pages 215-232. Gordon and Breach, New York,
1967.

[78] W. Lenhart, R. Pollack, J.-R. Sack, R. Seidel, M. Sharir, S. Suri, G. T. Toussaint, S. White-
sides, and C. K. Yap. Computing the link center of a simple polygon. Discrete Comput.
Geom., 3:281-293, 1988.

[79] A. Lingas, A. Maheshwari, and J.-R. Sack. Parallel algorithms for rectilinear link distance
problems. In Proc. 7th IEEE Internat. Parallel Process. Sympos. IEEE Computer Society,
1993.

[80] Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition search and st-numbering
in graphs. Theoretical Computer Science, 47(3):277-296, 1986.

[81] K. Mehlhorn. Sorting and Searching, volume 1 of Data Structures and Algorithms. Springer-
Verlag, Heidelberg, Germany, 1984.

[82] J. S. B. Mitchell, C. Piatko, and E. M. Arkin. Computing a shortest k-link path in a polygon.
In Proc. 83rd Annu. IEEE Sympos. Found. Comput. Sci., pages 573-582, 1992.

[83] J. S. B. Mitchell, G. Rote, and G. Woeginger. Minimum-link paths among obstacles in the
plane. Algorithmica, 8:431-459, 1992.

[84] B. J. Nilsson and S. Schuierer. An optimal algorithm for the rectilinear link center of a
rectilinear polygon. In Proc. 2nd Workshop Algorithms Data Struct., volume 519 of Lecture
Notes in Computer Science, pages 249-260. Springer-Verlag, 1991.

[85] Bengt J. Nilsson and Sven Schuierer. Computing the rectilinear link diameter of a poly-
gon. In Computational Geometry — Methods, Algorithms and Applications: Proc. Internat.
Workshop Comput. Geom. CG ’91, volume 553 of Lecture Notes in Computer Science, pages
203-215. Springer-Verlag, 1991.

[86] M. H. Nodine and J. S. Vitter. Deterministic distribution sort in shared and distributed
memory multiprocessors. In Proc. 5th ACM Symp. on Parallel Algorithms and Architectures,
June 1993.

[87] M. H. Nodine and J. S. Vitter. Paradigms for optimal sorting with multiple disks. In Proc.
of the 26th Hawaii Int. Conf. on Systems Sciences, January 1993.

[88] R. H. J. M. Otten and J. G. van Wijk. Graph representations in interactive layout design.
In Proc. IEEE Internat. Sympos. on Circuits and Systems, pages 914-918, 1978.

[89] M. H. Overmars. Range searching in a set of line segments. In Proc. 1st Annu. ACM Sympos.
Comput. Geom., pages 177-185, 1985.

[90] M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput.
Syst. Sci., 23:166-204, 1981.

[91] T. Ozawa and H. Takahashi. A graph-planarization algorithm and its applications to random
graphs. In Graph Theory and Algorithms, volume 108 of Lecture Notes in Computer Science,
pages 95-107. Springer-Verlag, Berlin, 1981.

[92] F. P. Preparata. A new approach to planar point location. SIAM J. Comput., 10:473-482,
1981.

[93] F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction. Springer-
Verlag, New York, NY, 1985.

92

[94] F. P. Preparata and R. Tamassia. Fully dynamic point location in a monotone subdivision.
SIAM J. Comput., 18:811-830, 1989.

[95] F. P. Preparata and R. Tamassia. Dynamic planar point location with optimal query time.
Theoret. Comput. Sci., 74:95-114, 1990.

[96] F. P. Preparata, J. S. Vitter, and M. Yvinec. Computation of the axial view of a set of
isothetic parallelepipeds. ACM Trans. Graph., 9:278-300, 1990.

[97] S. Ramaswamy and P. C. Kanellakis. OODB indexing by class-division. In Proc. ACM
SIGMOD Internat. Conf. on Management of Data, pages 139-150, 1995.

[98] S. Ramaswamy and S. Subramanian. Path caching: A technique for optimal external search-
ing. In Proc. ACM Symp. on Principles of Database Sys., pages 25-35, 1994.

[99] J. H. Reif and S. Sen. An efficient output-sensitive hidden-surface removal algorithms and
its parallelization. In Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 193-200, 1988.

[100] J. H. Reif and J. A. Storer. Minimizing turns for discrete movement in the interior of a
polygon. IEEE J. Robot. Autom., pages 182-193, 1987.

[101] I. Rival and J. Urrutia. Representing orders by translating convex figures in the plane. Order,
4:319-339, 1988.

[102] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar
graphs. Discrete Comput. Geom., 1(4):343-353, 1986.

[103] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Commun.
ACM, 29:669-679, 1986.

[104] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci.,
24:362-381, 1983.

[105] J. A. Storer. On minimal node-cost planar embeddings. Networks, 14:181-212, 1984.

[106] S. Subramanian and S. Ramaswamy. The P-range tree: A new data structure for range
searching in secondary memory. In Proc. ACM-SIAM Symp. on Discrete Algorithms, pages
378-387, 1995.

[107] S. Suri. A linear time algorithm for minimum link paths inside a simple polygon. Comput.
Vision Graph. Image Process., 35:99-110, 1986.

[108] S. Suri. Minimum link paths in polygons and related problems. Ph.D. thesis, Dept. Comput.
Sci., Johns Hopkins Univ., Baltimore, MD, 1987.

[109] S. Suri. On some link distance problems in a simple polygon. IEEE Trans. Robot. Autom.,
6:108-113, 1990.

[110] R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM
J. Comput., 16(3):421-444, 1987.

[111] R. Tamassia. A dynamic data structure for planar graph embedding. In T. Lepisto and
A. Salomaa, editors, Automata, Languages and Programming (Proc. 15th ICALP), volume
317 of Lecture Notes in Computer Science, pages 576-590. Springer-Verlag, 1988.

[112] R. Tamassia. An incremental reconstruction method for dynamic planar point location.
Inform. Process. Lett., 37:79-83, 1991.

[113] R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar graphs.
Discrete Comput. Geom., 1(4):321-341, 1986.

[114] R. Tamassia and I. G. Tollis. Representations of graphs on a cylinder. SIAM J. Discrete
Math., 4(1):139-149, 1991.

93

[115] R. Tamassia and J. S. Vitter. Parallel transitive closure and point location in planar struc-
tures. SIAM J. Comput., 20(4):708-725, 1991.

[116] R.E. Tarjan and U. Vishkin. Finding biconnected components and computing tree functions
in logarithmic parallel time. STAM J. Computing, 14(4):862-874, 1985.

[117] J. D. Ullman and M. Yannakakis. The input/output complexity of transitive closure. Annals
of Mathematics and Artificial Intellegence, 3:331-360, 1991.

[118] D. E. Vengroff. Personal communication, 1994.

[119] D. E. Vengroff and J. S. Vitter. I/O-efficient scientific computation using TPIE. Manuscript,
1995.

[120] Darren Erik Vengroff. A transparent parallel I/O environment. In Proc. 1994 DAGS Sympo-
sium on Parallel Computation, July 1994.

[121] U. Vishkin. Personal communication, 1992.

[122] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for parallel memory I: Two-level
memories. Algorithmica, 12(2), 1994.

[123] S. Wimer, I. Koren, and I. Cederbaum. Floorplans, planar graphs, and layouts. IEEE Trans.
on Circuits and Systems, 35(3):267-278, 1988.

[124] S. K. Wismath. Characterizing bar line-of-sight graphs. In Proc. 1st Annu. ACM Sympos.
Comput. Geom., pages 147-152, 1985.

[125] B. Zhu. Further computational geometry in secondary memory. In Proc. Int. Symp. on
Algorithms and Computation, 1994.

94

