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ABSTRACT
With the adoption of timestamps and geotags on Web data,
search engines are increasingly being asked questions of“where”
and “when” in addition to the classic “what.” In the case
of Twitter, many tweets are tagged with location informa-
tion as well as timestamps, creating a demand for query
processors that can search both of these dimensions along
with text. We propose 3W, a search framework for geo-
temporal stamped documents. It exploits the structure of
time-stamped data to dramatically shrink the temporal search
space and uses a shallow tree based on the spatial distri-
bution of tweets to allow speedy search over the spatial
and text dimensions. Our evaluation on 30 million tweets
shows that the prototype system outperforms the baseline
approach that uses a monolithic index.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval; H.3.4 [INFORMATION
STORAGE AND RETRIEVAL]: Systems and Software

General Terms
Algorithms Performance Experimentation

Keywords
Efficient query processing, Geographic and temporal search
engines, Twitter search engines

1. INTRODUCTION
1.1 Motivation
The digital world becomes more mobile every day. As of
2013, 56% of the world’s population owns a smartphone,
and a full 50% of mobile phone owners use their phone as
their primary tool for connecting to the Internet1. Twitter

1http://www.digitalbuzzblog.com/infographic-2013-
mobile-growth-statistics/
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reported in late 2013 that 60% of their users access Twitter
from a mobile device, and that primarily-mobile users are
much more likely than average users to tweet while out of
their homes2. As more and more web content is generated
on the move, it is increasingly tagged with location data as
well as creation timestamps. This multi-dimensional data
allows for a much richer search experience. Users can query
for keywords in documents that were created only within a
specific geographic area and period of time. For instance, a
presenter at an academic conference may wish to gauge audi-
ence sentiment after presenting new research on kangaroos.
The researcher wants to know: “What were people tweeting
about my paper at this conference?” More formally, the user
wishes to retrieve relevant documents (here, we use tweets)
for the keywords “kangaroo paper” in the geographical area
of Dallas, Texas for the time range between November 3 and
November 5, 2014. All the information necessary to answer
this query is available in a geo-and-time-stamped document
collection, but it is surprisingly difficult to execute on a stan-
dard search engine.

Geo-temporally-limited queries are also a golden opportu-
nity for query processing optimization — careful partition-
ing of the data can allow the search engine to apply early
termination techniques and prune large parts of the search
space, avoiding costly computations. In this paper, we present
3W, a search framework for geo-temporally tagged data.
Our system uses multiple index slices stored in a shallow
tree based on the spatial distribution of geo-stamped data to
support fast retrieval for location-based queries; it achieves
considerable speedups in retrieval for temporal queries by
making use of the temporal structure of time-stamped doc-
uments. 3W supports low-latency retrieval for queries with
spatial, temporal, and textual components. One example of
text tagged with both geographic and temporal identifiers
is Twitter data. Every tweet has a timestamp, and, since
users can opt to have their location (as determined by GPS)
attached to their tweets, many have geo-stamps as well. As
a social medium, Twitter is primarily used for daily chatter,
conversations, and discussions of current events [19]. The
spatial and temporal aspects of a tweet, therefore, are es-
sential for providing context to the text. The same tweet
can carry different meanings depending on its context: the
tweet “eating breakfast” issued from a user’s home at 8am

2https://blog.twitter.com/2013/new-compete-study-
primary-mobile-users-on-twitter



is quite commonplace, but becomes rather unusual when
posted from a concert at 9pm. Teevan et al. found that
people often search Twitter for “temporally relevant infor-
mation”, including queries that are both highly localized and
time-specific, such as real-time local traffic or weather, and
information about events that friends were attending [31].
This usage requires a retrieval system designed specifically
to efficiently retrieve geo-and-temporally relevant results.

While 3W can be used for any form of geo-temporally an-
notated documents, we use Twitter data in our evaluations
since it vividly illustrates the potential of the system. Un-
like traditional web data, where the small amount of spatial
and temporal information is dwarfed by an overwhelming
amount of text, geo-temporally stamped tweets contain a
limited amount of text along with full temporal and spatial
information for each document. Rather than serving as ad-
ditional metadata, the temporal and geographic aspects of a
tweet are actually searchable dimensions in their own right.

In addition to its geo-temporal aspects, the Twitter collec-
tion also grows at a regular and rapid rate. In our dataset,
an average of eight tweets were issued per second in the USA
alone. Since Twitter is so dynamic, a Twitter query proces-
sor should also have native support for frequent and low-cost
updates to incorporate new tweets into the index.

1.2 System overview
The naive (or rather exhaustive) approach to serving geo-
temporal range queries with an inverted index is to find all
documents matching the keywords (in a conjunctive or a
disjunctive query) and then remove from the result set all
documents that lie outside of the cube defined by the query
ranges. In this approach the runtime is proportional to the
length of the inverted lists and is not limited by the query
ranges. We propose a system that favors compact query
ranges and provides a significant boost for them. Under
our system, query processing time is proportional to the
amount of relevant data, and not the entire search space.
We compare our system to a baseline implementation using
monolithic index and show a significant speedup for compact
queries.

Our contribution: [a] A query processing system that sup-
ports low-overhead extension of keyword queries with geo-
temporal ranges and obtaining significant speedup for com-
pact queries. [b] Our system is highly configurable: it can
use any off-the-shelf inverted index as a black-box, or only
slightly modified. [c] We describe a mechanism for dynamic
optimization of data layout for systems where query distri-
butions are volatile.

The paper is structured as follows: In Section 2, we present
a brief overview of related work; in Section 3, a high-level
view of our system is presented. We evaluate our system
in Section 4. Finally, Section 5 discusses avenues for future
work, including the possibility of generalizing our approach
to other text corpora with geo-temporal data.

2. RELATED WORK
Fast textual search has been studied in depth for around 30
years [1], and various optimization techniques, compression
algorithms, and partitioning schemes have been evaluated

to boost the efficiency and effectiveness of inverted index
based IR systems. Recently, significant research effort has
been invested in fast textual search with either temporal or
geographic constraints. The former allows users to query for
text within a specific time range. A sample query could be
“find all documents containing the keyword ‘apple’ between
January and May of 2012”. Though some related work has
been done towards this motivation in the GIS and informa-
tion processing communities [23, 26], only a few works on
this topic have been produced by the IR community [16, 5].
The latter, geographically constrained search, allows users to
constrain text queries within a geographic bounding area. A
typical request would be something like “find all documents
containing the keyword ‘apple’ in the city of New York”.
Among others, [15], [38], [9],[8], [33] and [37] propose solu-
tions for this search problem. Of these papers, [9] is most
relevant to our work. We adopt its basic idea of how to use
fast textual query processing technique to boost the perfor-
mance of the geographic search. However, we capture and
explore the temporal information as well, proving a signifi-
cant contribution over existing work.

Across both the information retrieval and database commu-
nity, only a few [32] [20] [30] [10] [21] have tried to address
the problem of searching across both the temporal and geo-
graphical dimensions. These suggest indexing both the spa-
tial and temporal dimensions in the context of a static and
dynamically-updating environment by using an improved
version of a traditional spatial index such as R-trees [17] or
KD-trees [2]. However, they do not use the inverted-index
based system proposed here.

Busch, et al [5] describe the system design of the Earlybird
search engine currently in use at Twitter. This provides
some valuable direction in designing and implementing a
real-time temporal Twitter search engine, but there is little
mention of efficiently exploiting the geographic information
embedded in the dataset.

In order to better understand users in Twitter, some studies
have focused on Twitter query log analysis, differences be-
tween microblog search and web search, and user behavior
[31, 19] as well. These papers provided useful guidance as
to how to generate a representative query log for evaluation
of our system performance.

3. ARCHITECTURE
The naive approach towards geo-temporal search involves
first searching a standard textual index of all the data, then
filtering the results by the desired geographic and temporal
ranges. The problem with this approach is obvious: the com-
putational effort is always a function of the size of the entire
dataset. This method completely disregards the potential
gains made possible by focusing only on the much smaller
portion of the data that actually matches the query’s geo-
temporal range. We refer to queries with a small geographic
and/or temporal range as compact.

A common way to achieve these gains is to segment the data
based on time, location, or both. An inverted index file is
created for each segment, and these files are then arranged
in some data structure that allows for easy access to the
correct bucket (e.g. a tree [24]). This reduces the search



range somewhat, but it is still dependent on the granularity
of the buckets. Designing a system that optimizes the bucket
size is not an easy task.

Our system is realized as a variant of an R-tree over the
spatial dimension of the data. Each tree node represents a
specific geographic area, and all data belonging to that area
is contained in or below that node. In particular, we store all
the data in leaf nodes, which each contain an independent
inverted index for all the documents found in the spatial
bounding box defined by that tree node. The tree is kept
very shallow to minimize query execution time. In the next
section, we describe in detail the construction of the tree
and how query processing is performed.

Figure 1: Geographic distribution of tweets

3.1 Spatial Dimension

Figure 2: A diagram of the USA spatially partitioned by

3W. Note smaller boxes in areas with high tweet volume

To efficiently manage the spatial component of our data, we
use a variant of an R-tree data structure. We split the total
area into non-overlapping bounding rectangles of geograph-
ical coordinates. As we can see in the example of Twitter
data in figure 1 the spatial distribution of user-generated
data tends to be highly skewed. This skew means that a
grid of equal-area squares is an inefficient way to bucket
the data (as suggested as well in [8]). Instead, we split the
corpus into bounding boxes with roughly similar number of
documents, rather than area. The geographic area covered
by each bounding box is therefore determined by the num-
ber of documents generated in it, and the tree’s topology
reflects the relative density of documents rather than some
more general spatial measure (e.g. square mileage). Our
construct resembles (at least in the initial static state) the
R*-tree described in [38].

Our tree construction algorithm is described in Algorithm
1. Using a node size threshold T, we construct a non-binary
tree. Each child node in the tree represents a geographic
bounding box strictly within that of its parent, containing at
most T documents. The tree’s topology is further governed
by a series of tunable parameters which set the number of
nodes per level. When T is large enough and these param-
eters are reasonably set, the tree is shallow and fits easily
into cache, making traversal extremely fast. Figure 2 gives a
graphical representation of the nested bounding boxes that
form our tree.

Algorithm 1 Spatial partitioning of the data

procedure split
Input:
1. P – set of n points < xi, yi > i ∈ 1..n
2. Branching factor at depth i {b0, b1, ...}
3. Threshold T
Result:
balanced tree with n

T
leaf-nodes and depth d

#stopping condition – leaf node reached
if n < T then return

d← depth of the node
S ← bd subsets of point set P
# s.t each subset has n

bd
points and

# their bounding boxes do not intersect

for all subsets ∈ S do
subtree ← SPLIT(subset) # call split recursively
add subtree as a child of this node

return this node as a root

The tree itself contains no data; each leaf node maintains
a pointer to an inverted index for all documents contained
within its geographic range. The text index at each leaf
node is a standard inverted index structure [1]. For our
experiments we use a custom in-house inverted index en-
gine optimized for tweets as described later, however we can
integrate any existing off-the-shelf engine. Our system tol-
erates dynamic updates of the index (especially addition of
new documents) if the underlying index engine supports up-
dates. A change in a single document (addition, editing or
deletion) in our set-up affects only one inverted index and
does not require updating a number of lists proportional to
the size of the tree. This is not always possible in systems
intertwining inverted index data with the spatial informa-
tion, where a single update can trigger a multiple updates
of different structures (as mentioned in [8]).

3.2 Temporal Dimension
To speed up queries with temporal ranges we ignore any
existing document ids and assign new document ids chrono-
logically. Once we have chronologically assigned docIDs, we
perform linear regression over all timestamps; this results
in a single simple function mapping each timestamp to do-
cID. This trivial conversion step eliminates the need for a
specialized structure to store the temporal component. In
addition, unlike segmentation of the data, such reordering
allows us to perform temporal searches at any level of gran-



ularity. This technique is a form of document reordering,
which has been shown to significantly decrease query pro-
cessing time [35]. When docIDs are assigned in chronological
order, all documents in a given temporal range will appear
as a contiguous block in an inverted list ordered by docIDs.
During query processing, the system will only decompress
blocks whose beginning or ending postings are within the
desired range. This leads to a significant reduction in query
processing time when using a block based compression sys-
tem or any method that allows the utilization of skiplists.
Several techniques have been previously proposed for assign-
ing document identifiers in ways that reduce the compressed
size of inverted lists and speed up query processing [12, 28,
3, 4, 27].

Figure 3: Example of time to docID range mapping for

Twitter data

To cope with irregularities in the temporal distribution of
documents, and thus timestamps, we introduce safety mar-
gins. The margins are set to be the largest deviations (pos-
itive and negative) from the linear function we learned for
our data. When calculating the temporal range for a query,
we add these safety margins on each side. In figure 3 we see
a slight variation in the number of tweets sent each hour of
the day. The safety margins are meant to cope with such
local (and repetitive) deviations.

Apart from repetitive small irregularities, however, another
cause for inaccurate linear regression (and hence larger mar-
gins) is naturally occurring large temporal gaps in the source
data. If, for instance, one subset of the documents are from
November and the rest are from April, the margins we need
to introduce to fix the flaw in the linear regression are ex-
tremely large. There are two methods of mitigating this
problem: the first is to perform multiple (though still a con-
stant number of) piecewise linear regressions. For example,
using 256 regressions for our experimental data reduces the
size of the required safety margins by an order of magnitude.
This method is helpful when the large margins are a result
of either of the above mentioned problems. The second pos-
sible way of dealing with large gaps in the document stream
is to introduce artificial gaps in the docIDs as well to make
the data fit the linear function better. This method is more
applicable to the case of a few large gaps in the data.

3.3 Query processing
When processing a query, we traverse the tree from the root,
following the path of the nodes whose bounding boxes inter-
sect the query’s geo-range. Once the query hits a leaf node,
it uses the pointer to the inverted index file of the node to
retrieve the inverted lists for all query terms. If the spatial

User Query

Time range:
“Nov 25-28 2014”

Keywords:
“Thanksgiving”

Geo range:
“Chicago-Miami”

Time  DocID
mapping

DocId range:
40,000 – 75,000

All US

EastWest

West 
coast

West 
coast

West 
coast

West 
coast

3W Tree

Inverted indexes set

Query processor

Relevant results

Figure 4: System Architecture overview

range overlaps more than one leaf node, all relevant indexes
are queried. The query targets only the range of docIDs that
was calculated from the temporal range of the query using
the stored regression function (see Section 3.2). Since the
leaf nodes queried may not precisely match the coordinates
of the user-specified bounding box, the final step is removing
all retrieved results outside the chosen geographic area. If
the tree is properly optimized based on query volume (see
Section 3.5.2), there should not be too many of these.

The query processing operation can be best explained via an
example (see Figure 4). Suppose that a user issues the fol-
lowing query: what tweets with the keyword“Thanksgiving”
were generated between November 25, 2014 and November
28, 2014 in the area from Chicago to Miami? This query
contains three dimensions: geographic, temporal, and tex-
tual. The geographic range is the bounding box defined by
Chicago as its top left corner and Miami as its bottom right
corner. The temporal range is from Nov 25, 2014 to Nov 28,
2014. The keyword is “Thanksgiving”. 3W takes the query
input and performs the following steps:

Step 1: The temporal component of 3W (explained at length
in Section 3.2) exploits the chronological assignment of the
docIDs to determine which tweets were issued in the queried
time range. In our example, after including safety margins,
the final range includes all documents with IDs from 40,000
to 75,000.

Step 2 (in parallel with step 1): The geographic portion of
the query searches the spatial tree until it reaches an index-
bearing node (or nodes) that intersects its range. Once the
range is covered, the inverted indexes from those nodes re-
turn all the inverted lists pertaining to the query keywords.
In our example, the query traverses past “All USA” down
to the nodes which indicate the specific range required; in
this case, the nodes“Northeast”, “Southeast”, and“Midwest”
(the number of nodes are reduced in this example for simplic-
ity) are reached and return their respected inverted indexes
for the term “Thanksgiving”.



Step 3: The query processor takes as input the range of time-
appropriate docIDs and the indexes returned by the spatial
tree. Utilizing block-skipping methods to efficiently ignore
all returned tweets outside the correct temporal range, the
query finds all tweets within the range which include the
keywords specified. This yields a set of the top-k tweets
containing all three components of text, space, and time.

3.4 Text Indexes
Our system is designed to integrate non-intrusively with any
inverted index engine regardless of its data layout and com-
pression, scoring system, and query processing algorithms.
However, to benefit from all optimizations, the inverted in-
dex system must conform with certain expectations. We list
them in order of triviality.

1. The inverted index must not intervene with our chrono-
logical assignment of docIDs. If the engine assigns its
own IDs it will have to provide a constant-overhead
mapping to our IDs.

2. The engine should support a mechanism of early ter-
mination of the query, given start and end docIDs. In
a conjunctive query this feature can be emulated by
introducing a dummy inverted list with docIDs from
the range.

3. The index engine should provide the option to exter-
nalize the lexicon (dictionary) data structure and re-
duce the query processing initialization times.

The first two are required to support the optimization of
search over temporal ranges, while the last one is needed to
reduce the space overhead of the supporting data structure
of the inverted files compared to a monolithic index.

3.5 Time overhead
3.5.1 Query cost analysis

Query processing consists of two main phases: a trivial phase
of finding the nodes of the spatial tree (which is held in mem-
ory) which intersect with the query and the second phase of
executing keyword search using the inverted index engines.
In the simplest case — when a query’s spatial range inter-
sects a single leaf node — the query time is inevitably faster
than a similar query to a monolithic index system. A query
to an inverted index consists of a lookup in a dictionary
(a lexicon), assignment of pointers to inverted lists (either
pointers to data in memory, or to buffers mapped to files
on disk), and the traversal of the lists. In this case, the
lookup and assignment require comparable time for a single
leaf node and a monolithic index, but the traversal of the
index section in a leaf node is much faster than traversing a
full index. The speedup is proportional to the ratio of the
monolithic index’s size and the size of the index in the leaf
node.

When a query’s spatial range intersects multiple leaf nodes
we need to execute a number of keyword searches in the
respective index files. Each of these incurs the overhead de-
scribed above. The worst case is when a user issues a ‘whole
world’ query hitting every leaf node. In a set-up where all
(or most of) inverted files are held in main memory, we do

not expect the overhead of multiple query initializations to
degrade the running time of a query when compared to a
monolithic index. Nevertheless, it is obvious that, concep-
tually, for such queries a monolithic index outperforms our
segmented system. If the files are located on a hard drive
the initialization cost can be as high as several milliseconds,
hence performing more than a few of them becomes com-
pletely infeasible.

3.5.2 Dynamic Restructuring
If we assume that a query stream is likely to include many
spatially]non-compact queries (that is, with large geographic
range) either constantly or fairly frequently, we need to ad-
dress the issue of high cost for query initialization. As we
mentioned, with main-memory-residing indexes the degra-
dation is not significant. In addition, if the lexicon is exter-
nalized, as listed in Section 3.4 as a requirement for an index
engine, the resulting speedup, along with the shallowness of
the tree, are enough to eliminate this overhead.

If the inverted index files reside on disk, the simple solution
would be to keep a single monolithic index in addition to
the tree and direct all the non-compact queries to it. This
static solution is too coarse and effectively doubles the stor-
age footprint for the system. Instead, we propose a dynamic
scheme to maintain a data layout that optimizes query run-
time with respect to the incoming query stream.

We propose to accumulate statistical data describing the ge-
ographic distribution of queries in every node of the spatial
tree — namely, how often a query hits all children of a node
instead of traversing a single one. At the end of each user
defined epoch, we traverse the tree hierarchy and perform
merge or split operations on the inverted files. We assume
that the visiting patterns in the next epoch will follow a sim-
ilar distribution to those of the current one, and determine
what will be the fastest method of execution. The options
are as follows: 1)if we saw many queries hitting most of the
leaf nodes in the subtree, it will be faster to query a mono-
lithic sub-index 2)if there were many queries hitting small
areas of the bounding box, we would benefit from splitting
the relevant leaf nodes to cover even smaller areas, or 3)the
system answered the majority of queries efficiently, and the
tree structure is therefore optimal. This method allows the
system to adapt gracefully to slow changes in the spatial
distribution of the query ranges. (Its performance, however,
does decrease linearly as the size of the gap(s) increase.)

The same functionality can be used to allow for trading off
space vs time optimizations. If some amount of extra space
overhead can be tolerated, it is possible to maintain data
in the internal nodes as well as in leaf nodes — i.e. after
performing a split or merge operation we keep the source
inverted file(s) and can fall back to it later when the dis-
tribution changes back. In fact this can be managed as a
cache — for a given space budget we can assign priorities to
internal nodes and keep their inverted files until the budget
needs to be reclaimed by a higher ranking node that evicts
the data. In the extreme case this converges to the simple
solution — of maintaining a single monolithic index along
with the tree data.

4. EXPERIMENTAL EVALUATION



4.1 Twitter-data-specific tweaks
Our Twitter dataset consists of 30 million tweets generated
in the continental USA between November 8 and December
1, 2011. The data was collected using Twitter’s streaming
API. Each data instance contains a unique tweet id, times-
tamp, latitude and longitude coordinates, and the text of
the tweet.

The casual nature of the microblogging platform and its
140-character limit result in text that is very different than
standard web data. Abbreviations, elongated words (e.g.
“soooooo”), and misspellings abound, many of them delib-
erate. There have been some attempts to use NLP methods
or external lists to normalize tweet vocabulary [18, 34], par-
ticularly misspelled words, but we were able to achieve a
60% reduction in index size using the following simple nor-
malization methods: 1) Removing all punctuation and spe-
cial characters, except @ and #, which carry special signifi-
cance in Twitter conversation. 2) Discarding all hyperlinks.
Since the urls are shortened, each one is unique and does
not reflect its destination domain, making it rather useless
for search purposes. 3) Compressing all sequences of two
or more identical characters to just two. This ensures that
multiple variants of misspelled words can be identified as
identical (e.g. “loooong” and “looong”) without removing
the double letters that are part of proper English spelling
(e.g “too”, “pool”, “apple”).

As the number of words in a tweet is so small, terms rarely
repeat within a document. The frequency data in inverted
lists for tweets thus compresses extremely well, as [5] points
out. In our dataset, we found that more than 95% of the
time, terms occur only once per posting. This allows us
to compress only the exceptional 5% whose frequencies are
greater than 1. Because most of the inverted lists in our
index were short and the gaps between consecutive docIDs
were large, we used VarByte [29] to compress the lists. The
compression is performed in blocks of 64 postings. We cur-
rently support AND queries with results ranked by BM25
[25] scoring. Our framework, however, is not limited to any
specific type of search algorithm or index architecture (as
long as our docID assignment policy is enforced); in fact,
each node could use a different inverted index engine. In
the future, we plan to try a standard indexing library such
as Lucene. We would also like to introduce the BMW search
algorithm [13] to our system to execute conjunctive and dis-
junctive top-K queries.

4.2 Query Log Generation
The evaluation of 3W was made somewhat difficult by the
lack of a publicly available log of microblog queries. As
shown by Teevan and colleagues [31], Twitter queries differ
substantially from those issued to a standard search engine.
Indeed, running a standard TREC query trace on our tweet
corpus produced almost no results. The problem is further
compounded by the fact that proper testing of 3W requires
queries with both temporal and spatial components.

To remedy this, we statistically sampled the dataset and
combined the terms to produce a set of artificial queries
with a distribution closely mirroring that of the terms in
the database. It is unknown whether the Twitter query dis-
tribution is related to the term distribution in the underlying

set, but we believe it is a logical assumption to make. Peo-
ple are more likely to search for common words than very
esoteric ones. In the case of Twitter, this is magnified by the
fact that all content is user-created; people tend to search
for popular topics, as well as tweet about them [31].

The term distribution in the experimental data has a very
long tail. About 50% of terms appear in only a single tweet,
and just 0.03% occur in more than 1000 tweets. A closer
look shows that most of these low-frequency terms are mis-
spellings or unusual combinations of terms that form an un-
common hashtag. It is unlikely that many people will search
for such terms. We therefore focus on the top few percent
of terms.

We experimented with generating random combinations of
terms. However, because of their random nature, many re-
turn no results. This does not accurately reflect a real-world
query trace, where many if not most queries do return re-
sults; it also artificially improves our speed because travers-
ing non-intersecting lists takes less time. We therefore set
out to create a heterogeneous query log that would return
at least some results for many or most of the queries. The
techniques we used for query log generation are similar to
those described in [38, 37].

The likelihood of a conjunctive query returning results de-
creases rapidly as the number of terms in it increases. In or-
der to create 4-term queries that return results, we restricted
ourselves to the single terms with the highest frequencies.
Taking the Cartesian product of the top several thousand
highest-frequency terms resulted in a massive set of over 7
million two-term queries. We ran all these queries through
3W and recorded the results. Even with queries composed
of the product of the top 3% of terms, only about 5% re-
turned a significant number of results. We took the top 3%
of queries by number of results and used them to create 3-
term queries. We did this by combining each two-term query
with a set of terms randomly chosen from a list of the most
frequent terms in the dataset. We refer to this process as
modified Cartesian product because each multi-term query
is combined not with every single-term query but only a set
number of randomly sampled terms. This provided us with
a very large number of high-frequency queries without the
massive overhead incurred by doing a full Cartesian product
operation at each step. We repeat the process on the top
5% (by number of results) of the 3-term queries to generate
a set of 4-term queries, many of which return results. We
filter the queries to remove those with repeated words, then
take a weighted sampling from the sets of 1-,2-,3-, and 4-
term queries to produce a heterogeneous query trace, varied
by number of terms as well as number of results.

4.3 Experiments
3W is designed to optimize search over 3 dimensions without
incurring significant space overhead. We compare 3W to
two baselines. One, the naive baseline, is optimized over a
single dimension, the text. The second, a single-node tree, is
designed for optimal performance over two dimensions, text
and temporal.

We implemented all the algorithms and the search engines
in C++ using BM25 as our ranking function and VarByte



for block-wise compression. We define query processing as
returning the top-1000 results of an AND query. The ex-
periments were conducted on a single core of an Intel Xeon
server with 2.27Ghz and all data structures reside in mem-
ory.

We compare the following systems in our experiments:

Naive baseline: a single inverted index for the entire
dataset. All documents that match the keywords are re-
turned and the set is then filtered by the desired space and
time ranges. In this case, the engine has to scan the full
dataset with each query.

Single-node tree — SN: the result of running our tree
initialization algorithm with the splitting threshold (see Sec-
tion 3.1) set to infinity — the data is never partitioned and
is stored in one large index. The difference between this
system and the naive baseline is the temporal aspect: do-
cIDs are assigned in chronological order and timestamp-to
-docID regression is performed to allow for efficient process-
ing of small temporal ranges.

256 leaf-node tree — 256T: the full 3W system. The
tree is constructed by the tree initialization algorithm (Al-
gorithm 1), with splitting threshold T set to 218 and indexes
in leaf nodes only. The assignment of docIDs is global and
performed in chronological order.

The query log was processed with the naive index and the
average query time across multiple tries was 78.3ms.

For the single-node tree and 256 leaf-nodes tree we ran the
same query log with 3 different temporal ranges (from short
to long: 5 minutes, 1 week, entire time range) and 3 different
spatial ranges (from small area to large: NY, 25% of the
USA, all of the USA).

5 mins 1 week all time
NY on SN 9.96 (7.9x) 17.86 (4.4x) 67.47 (1.2x)
NY on 256T 0.84 (93.0x) 1.53 (51.2x) 5.90 (13.3x)
25% US on SN 7.81 (10.0x) 17.83 (4.4x) 67.81 (1.2x)
25% US on 256T 1.95 (40.1x) 4.80 (16.3x) 18.24 (4.3x)
all US on SN 6.14 (12.8x) 20.27 (3.9x) 78.34 (1.0x)
all US on 256T 7.78 (10.1x) 24.70 (3.2x) 93.54 (0.8x)

Table 1: Mean runtime of a query (in ms.) with
different temporal and spatial ranges for two tested
systems. The speedup relative to the naive system
is in parentheses

We also created a small handcrafted set of queries and man-
ually evaluated the results returned for them. We found that
the results were relevant and usefully ranked.

Single node 256 leaf tree 2x space 256 tree
32.61 17.61 14.72

Table 2: Mean runtime of a query (in ms.) in mixed
log for different systems

In table 2 we show the performance of a system where we
allow redundant duplication of the data from leaf-nodes to

upper levels of the tree. In this case it is a 2x space overhead
scheme. We used a mixed query log with different temporal
and spatial ranges allowed.

4.4 Discussion
The mean runtime for the query processing algorithm was
78.3ms, and we observe similar times in the tree experiments
of all time using a single node tree index. This is expected,
as this system does not benefit from spatially compact query
ranges and the temporal range in this experiment is the en-
tire time range. For the same reason, there is almost no
difference in the performance of a single node tree index
across different spatial ranges in 1-week and 5-minutes ex-
periments. We see, however, the effect of the temporal opti-
mization — the speedup of this system relative to the naive
baseline is >4x and >7x for 1-week and 5-minutes ranges
respectively.

In the all-time column of the table for the 256-tree we see
the effect of the spatial partitioning scheme, while the 1-
week and 5-minutes columns present the runtime of queries
compact in both temporal and spatial dimensions. As ex-
pected, the smaller the query area, the faster it is processed.
We observe speedups of 13.3x, 51.2x, and 93x when using
spatial ranges within the NY area for all-time, 1-week, and
5-minutes respectively (when compared with the naive in-
dex).

Even for a relatively large area — 25% of the USA — we
see significant speedups for the 256-tree: 4.3x,16.3x,40.1x
for all-time, 1-week, and 5-minutes respectively.

Note that in the last line we see a degradation in mean query
time for the 256-tree index when the entire US range is used.
This is the result of the above-mentioned initialization over-
head that we must incur when a query is intersecting many
(all of them here) spatial nodes. This overhead is more pro-
found in a disk-residing system; in order to be able to observe
it in our system (main-memory-residing) we deliberately re-
frained from optimization of the initialization routine in our
implementation of the query processor.

The results in table 2 show how a system with dynamic re-
construction of the tree structure could mitigate this prob-
lem. In this experiment we used a system with 2x space
overhead allowed. The query log was a mix of all the ranged
queries from our first experiment. We see that on average
both single-node and 256-tree achieve a speedup relative to
the naive index (that runs for 78.3ms), but the redundant
tree performs better as it shines in the compact queries (like
the non-redundant 256-tree) while avoiding the overhead of
queries for large areas (like the single-node tree).

5. CONCLUSION AND FUTURE WORK
Our system efficiently processes multi-dimensional queries
over text, space, and time. With a small space overhead
and easy integration to an underlying inverted-index-based
search engine, it can benefit many systems by early termi-
nating geo-temporal queries. The combined speedup for a
system that serves a high volume of queries highly localized
in time and space can reach two orders of magnitude when
compared to a classical monolithic index. The speedup re-
mains equally impressive even when the underlying inverted



indexes already apply sophisticated early termination tech-
niques. By changing the branching factor and leaf node
threshold parameters, the user can also tweak the system
for optimal performance under any kind of different environ-
ment, from the most space-starved to the most time-critical.

In the future, we are interested in comparing the perfor-
mance and compression tradeoffs for using docID reorder-
ing locally (on a leaf-node level) rather than globally. The
resource-optimization problem of duplicating indexes at higher
nodes is also an important area for further investigation.
This could allow for more space-efficient automatic tree re-
structuring. This question is important especially when
some of the index files are located on a hard drive. How
does query caching affect the speedup we observe in our ex-
periment? A further study with larger query logs can shed
some light on this question. We also plan to consider our
spatial structure for top-k spatial queries (or nearest neigh-
bor keyword queries) – i.e. where, instead of a query range,
a point is given and the engine has to return the k nearest
relevant documents. As this kind of query is extremely local-
ized, we believe that our approach can significantly reduce
processing time.
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