

Automated Decision Support for Human Tasks in a Collaborative System

The Case of Deletion in Wikipedia

Bluma S. Gelley and Torsten Suel Polytechnic Institute of NYU WikiSym 2013, August 5, 2013

Deleted Articles

- "Ingall Services is a gardening and car-washing group/company lead and founded by headworker teenager Dave Ingall. Ingall Services originated in August 2011. It's based on Cedar Way and operates to the surrounding areas."
- "Dylan Campbell is a 10 year old computer genius who lives in the eastern USA. He enjoys surfing the web, film making, and chatting with his friends via video chat."
- "Bruce L Rastetter is a lowa business leader and a political activist. He has started many agricultural based businesses ranging from pork production to ethanol production."

Deletion

- Hundreds of deletions
- ~I,000 new articles/day
 - A lot of time spent on patrolling
 - Most patrollers also contribute to the rest of the site
- Speed of deletion:
 - Many complain about speed and abruptness of the deletion process (e.g. Ford & Geiger, 2012)
 - ▶ 47% of Speedy-Deleted articles are nominated within 10 minutes of creation (Gelley, 2013)
 - ▶ 70% of new users whose first article is nominated for deletion have the nomination occurring within 10 minutes of article creation (Geiger/WMF, 2011)

Editor Retention

- New editors who start by creating an article are 6 times more likely to abandon WP immediately if the article is deleted (User:MrZ-man study)
- Wikipedia cannot afford this

Our Work

- Until now, few hard facts about deletion
- We set out to understand better what was actually happening
 - Collect and examine deleted articles
 - Build a model to differentiate between deleted and kept articles that we can use to improve the deletion process
- Analysis of article characteristics is in a previous paper; in this work we focus mostly on the model
 - http://arxiv.org/abs/1305.5267

Our Contribution

- A model of Wikipedia articles that can distinguish between deleted and not-deleted (kept) articles
- Several datasets of deleted articles available for download and use

Types of Deletion

Speedy Deletion

- Most common form
- Articles that are so unencyclopedic that they don't even require discussion – can be nominated for deletion by anyone and unilaterally deleted by any admin
- ▶ 22 Speedy Deletion Criteria
- PROposed Deletion (PROD)
 - Don't meet any Speedy criteria, but still unencyclopedic
 - 7-day waiting period after nomination; if anyone contests the nomination it is removed

Types of Deletion (ctd)

- Deletion Discussion (Articles for Deletion AfD)
 - Supposed to be default deletion form
 - Articles of borderline encyclopedic quality are nominated for community discussion
 - After > I week, an admin determines the consensus and acts on it

Some Statistics

- Number of new AfDs/day: 30 − 100+
 - Mean 60, median 59
- Number of new PRODs/day: 30 ~70
 - Mean 45, median 44
- Number of Speedies/day: several hundred
 - Range varies widely
- Deletion Rates
 - ► AfDs: ~50%
 - ▶ PRODs: ~86%
 - Speedies: > 70%

Anticipated Use Cases

- Finding articles to improve
 - New articles
 - Older articles that are borderline
- Decision Support for New Page Patrollers (NPP's)
 - Allow them to make better, more informed decisions
- Helping (new) editors evaluate and improve their articles before creation
 - Article Wizard can be confusing
 - Give feedback on likelihood of deletion
 - Perhaps give detailed instructions for how to improve

Potential Benefits

- Make the New Page Patrol and deletion processes more efficient and effective
- Reduce load on and stress on NPP's
 - Hopefully reduce 'newbie biting'
 - Allow them more time to contribute to Wikipedia
- Improve editor retention

Speedy Deletion Criteria

- Of 22 Speedy deletion criteria, the two we chose were
 - ▶ A7/A9 "no indication of importance"
 - ▶ GII "unambiguous advertising and promotion"
- These two comprise ~45% of all Speedy deletions
- Most others can be found using heuristics, or vandalism detection
- We use all PRODs and AfDs without filtering

Data Collection - Speedies

Challenge:

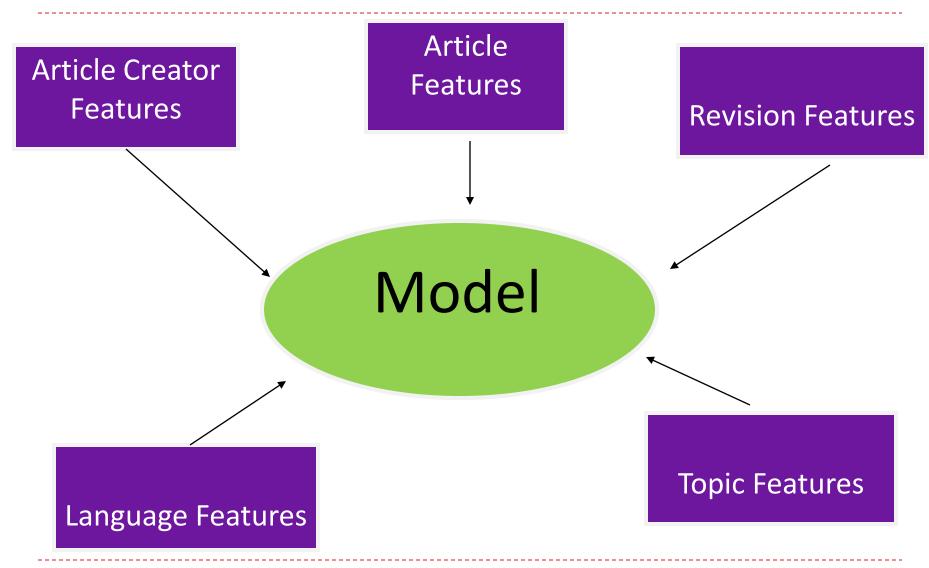
- we don't know which articles will be nominated until they are...
- but once nominated, they can be deleted at any time! (and often are within minutes [Geiger/WMF 2011])

Solution:

- Check Candidates for Speedy Deletion page every few minutes and download newly nominated articles
- Later, check if they were deleted

Dataset Summary

Name	Description	Kept Articles	Deleted Articles	Total
AfD	AfD's Jan-Mar 2013	798	270	1068
PRODs	Oct-Dec '11; Mar '13; kept set from similar articles	2036	991	3027
Original	Oct-Dec '11; kept set from similar articles	1381	2444	3825
Old	Articles from Original set > I week	580	191	771
New	Downloaded shortly after creation	2198	723	2921



Get this data

 All datasets available for download at https://github.com/bsgelley/Wikipedia-deletion-data

Features

Classification

- Random Forests of 40 trees (high accuracy, low overhead, used in similar tasks)
- Weka Machine learning suite
- Larger datasets = 70-30 split; smaller (Old and AfD) = 10fold cv over entire dataset

Baseline

- No known work to compare to
- Experiment on different datasets and compare results
- Also experiment on different feature sets

Results - Overview

	Precision	Recall
AfD	96%	33%
PROD	98%	71%
Speedy	98.6%	97.5%

Results - Speedies

	Original	Old	New
Baseline (Zero-R)	63.42%	75%	72.7%
All features	97.57	92.6	95.21
No language	97.22	91.31	95.55
features			
Language	96.18	93.8	78.0
Features			
Creator Features	91.49	85.47	92.8
Revision	95.04	82.1	83.0
Features			
Article Features	90.88	82.1	85.39
Non time-bound	95.79	N/A*	N/A*
Bag of Words	96.55		
(SVM)			
2011 training,	96.4		
2012 test	Automated Dec	cision Support for Human Tas	sks in a Collaborative System

Automated Decision Support for Human Tasks in a Collaborative System

Results - Discussion

- Best results on Speedies, then PRODs, then AfDs
 - This was what we expected
- Original set accuracy was very high for all feature sets
- Old set results were good enough to show that the model generalizes to older pages
- New set results also very high
- Likelihood of bias is low

Impact on Editor Retention

- Use of automated tools has been shown (Geiger, et. al. 2012, Halfaker et. al. 2012) to reduce editor retention
- Last thing we want!
- We are confident that this system will not
 - Decision support vs. assisted editing
 - Careful deployment and testing
 - Relieving some of the burden on patrollers may actually decrease their aggressiveness

Conclusion

- We built a model that can differentiate between kept and deleted articles with high precision and good recall
- Our model can be used in decision-support tools for various purposes
- With thoughtful design and careful deployment, the benefits should outweigh the risks

Future Work

- Implementation as a set of decision-support tools
- Find optimal feature combinations, including new features
 - Topic modeling in particular
- Comprehensive review of deleted articles to determine if they were rightly deleted

Questions?

Thank You!